亨利定律,是由威廉·亨利所发现的一个气体的定律。

公式与亨利常数

亨利定律的公式为:

其中:
为气体的分压;
为溶于溶剂内的体积摩尔浓度;
为亨利常数,其单位为L-atm/mol,atm/摩尔分数 或是 Pa-m3/mol;

自然对数后,这个公式会让我们更容易了解。

某些气体的常数如下:

当这些气体溶解于S.T.P.的水中时,其选用之浓度表示法应为体积摩尔浓度,L为溶液的升数;atm为溶液上的气体分压;mol为溶于溶剂中的摩尔数。值得注意的是:亨利常数的k值会随着溶剂和温度变化。

亨利定律与拉乌尔定律

亨利定律与拉乌尔定律都和其蒸气压的成分对浓度有关。且我们可以以更简单的方式替换式子中的摩尔浓度为摩尔分数。当选用的是摩尔分数而不是体积摩尔浓度时,k值与其单位均会改变。

亨利定律:
拉乌尔定律:

两者间不同处在于,p*是某一物质的平衡蒸气压,因此亨利常数kH是不同于p*的值。另外,亨利定律是由混合相中实验所产生而非纯物质。 如果此溶液为理想溶液(虽然几乎都不是),则所有的成分均会遵守拉乌尔定律。在大部分的反应系统中,只有稀薄溶液才可以适用。在这种情况下,溶质遵守亨利定律;而溶剂遵守拉乌尔定律。偏摩尔量的集合公式可以证明此种关系。

不同形式的亨利定律

下列有许多不同的亨利常数表达法:

More information , ...
表 1: 不同形式的亨利定律与其常数(于298K下的水溶液)
方程:
单位:
1.3 E-3 769.23 4.259 E4 3.180 E-2
7.8 E-4 1282.05 7.099 E4 1.907 E-2
二氧化碳 3.4 E-2 29.41 0.163 E4 0.8317
6.1 E-4 1639.34 9.077 E4 1.492 E-2
3.7 E-4 2702.7 14.97 E4 9.051 E-3
4.5 E-4 2222.22 12.30 E4 1.101 E-2
1.4 E-3 714.28 3.955 E4 3.425 E-2
一氧化碳 9.5 E-4 1052.63 5.828 E4 2.324 E-2
Close

其中:

  • = 每一升中所含的摩尔数
  • = 溶液的升数
  • = 未溶解于溶剂中的气体分压,以大气压表示
  • = 溶液中的摩尔分数
  • = 大气压(绝对压强)

这些常数的表达方式只是原来常数的倒数而已,如同上表中各项的比较。既然不同形式的kH值都可以当作亨利常数的表达方式,因此在研读这类资料时,应该更加留意亨利定律的形式。 另一点,亨利定律的适用范围有限制,他只适用于微溶的状态下。因此,越是不理想的情况下,其对浓度的依存性就越小,也就越不符合。 他也只适用于未发生化学反应的溶液中。二氧化碳就是个例子,它与水混合会迅速反应成碳酸

不同形式的亨利定律

当温度改变的时候,亨利常数随即改变。这也就是为什么人们喜欢将它称作亨利系数的原因。下列即是温度与亨利常数的关系:

其中 (Theta) 指的是标准温度(298K)。

下面列出了上列方程的一些常数C值(以凯氏温标为单位)

表 2: C的值
气体 二氧化碳 一氧化碳
C 1700 500 2400 1300 230 490 1300 1300

气体的溶解度会随着温度的增加而越来越小。像加热溶有氮气的水从25 °C 至 95 °C,其溶解度会下降成原来的43%,当加热的时候,C值也跟着改变了,因此C值也可以计作:

其中 溶解热;R为理想气体常数

地球物理学中的亨利定律

地球物理学中亨利定律表示惰性气体溶解在硅酸中的量。用法如:

其中:

  • 下标m 为融化的量
  • 下标g 为气体的状态
  • 为密度
  • 为温标的倒数
  • 玻尔兹曼常数
  • 为溶质在这两个状态里的过量的化学势能

参见

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.