Loading AI tools
来自维基百科,自由的百科全书
超度量空间是一种特殊的度量空间,其中三角不等式用d(x, z) ≤ max{d(x, y), d(y, z)}来代替。有时相关的度量也称为非阿基米德度量或超度量。虽然超度量空间中的一些定理看来奇怪,它们在许多应用中都自然出现。超度量空间在数学上其中一个应用是关于p-进数的研究。
正式地,超度量空间是点M的集合与一个相关的距离函数(又称为度量):
(其中R是实数集合),使得对于所有M内的x,y和z,都有:
第四个条件可加强为当d(x, y)和d(y, z)不相等时,d(x, z) = max{d(x, y), d(y, z)},原因如下:
首先,可以不失一般性地假定d(x, y) < d(y, z),因此d(x, z) ≤ max{d(x, y), d(y, z)}可变为d(x, z) ≤ d(y, z),但另一方面,d(y, z) ≤ max{d(x, y), d(x, z)},由于已经假定d(x, y) < d(y, z)之故,因此显然max{d(x, y), d(x, z)}不能为d(x, y),因此max{d(x, y), d(x, z)} = d(x, z),所以有d(y, z) ≤ d(x, z),由于d(x, z) ≤ d(y, z)和d(y, z) ≤ d(x, z)两者皆成立之故,因此有d(x, z) = d(y, z)。因此d(x, z) = max{d(x, y), d(y, z)}。
从以上的定义中,我们可以推出超度量空间的一些典型的性质。例如,在超度量空间内,对于所有M内的x,y和z以及R内的所有r和s,都有:
在这里,(开)球体的概念和记法与度量空间中的球体一样,也就是说:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.