Loading AI tools
来自维基百科,自由的百科全书
在数学中,点积(德语:Punktprodukt;英语:dot product)又称数量积或标量积(德语:Skalarprodukt;英语:scalar product),是一种接受两串等长的数字序列(通常是坐标向量)、返回单一数字的代数运算。[1]
此条目没有列出任何参考或来源。 (2013年12月13日) |
在欧几里得几何里,两条笛卡尔坐标向量的点积常称为内积(德语:inneres Produkt;英语:inner product)。点积是内积的一种特殊形式:内积是点积的抽象,内积是一种双线性函数,点积是欧几里得空间(内积空间)的度量。
从代数角度看,先求两数字序列中每组对应元素的积,再求所有积之和,结果即为点积。从几何角度看,点积则是两向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。
点积的名称源自表示点乘运算的点号(),读作a dot b
,标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(),读作a cross b
,其结果为向量,称为叉积或向量积。
点积有两种定义方式:代数方式和几何方式。通过在欧氏空间中引入笛卡尔坐标系,向量间的点积既可以由向量坐标的代数运算得出,也可以通过引入两向量的长度和角度等几何概念来求解。
向量和的点积定义为:
例如,三维向量和的点积是
点积还可以写为:
这里,是列向量的转置。
使用上面的例子,1×3矩阵(列向量)乘以3×1矩阵(行向量)的行列式就是结果(通过矩阵乘法得到1×1矩阵):
在欧几里得空间中,点积可直观定义为
注意:点积的形式定义和这定义不同;在形式定义,和的夹角用上述等式定义。
这样,互相垂直的两条向量的点积总是零。若和都是单位向量(长度为1),它们的点积就是它们的夹角的余弦。那么,给定两条向量,它们之间的夹角可以以下公式得到:
这个运算可以简单地理解为:在点积运算中,第一向量投影到第二向量上(向量顺序这里在不重要,点积运算可交换),然后通过除以它们的标量长度来“标准化”。这样,这分数一定是小于等于1的,可以简单转化成角度值。
欧氏空间中向量在向量上的标量投影是指对于向量B来说向量A的垂直度到向量B的代表长度
这里是和的夹角。从点积的几何定义不难得出,两向量的点积:可以理解为向量在向量上的投影再乘以的长度。
点积的两种定义中,只需给定一种定义,另外一种定义就可以推出。
设是空间的一组标准正交基,可以得出:
上文中已经得知两条向量点积的几何定义实际上就是一条向量在另外一条向量上的投影,故在任一标准基的点积就是在此标准基向量上的投影,而根据向量自身的定义,这个投影即为。因此:
应用余弦定理。 注意:这个证明采用三维向量,但可以推广到维的情形。
考虑向量
重复使用毕氏定理得到
而由代数定义
所以,根据向量点积的代数定义,向量和自身的点积就是其长度的平方。
现在,考虑从原点出发的两条向量和,夹角。第三条向量定义为
构造以,,为边的三角形,采用余弦定理,有
根据引理1,用点积代替向量长度的平方,有
同时,根据定义 ≡ - ,有
根据分配律,得
连接等式(1)和(2)有
简化等式即得
以上即为向量点积的几何定义。
需要注意的是,点积的几何解释通常只适用于 ()。在高维空间,其他的域或模中,点积只有一个定义,那就是
点积有以下性质。
如果是单位向量,则点积给出在方向上投影的大小,如果方向相反则带有负号。分解向量对求向量的和经常是有用的,比如在力学中计算合力。
不像普通数的乘法服从消去律,如果,则总是等于,除非等于零。而对于点积:
矩阵具有弗罗比尼乌斯内积,可以类比于向量的内积。它被定义为两个相同大小的矩阵A和B的对应元素的内积之和。
复矩阵情况下:
实矩阵情况下:
计算机图形学常用来判断方向,如两向量点积大于0,则它们的方向朝向相近;如果小于0,则方向相反。
此方法用于动画渲染(Animation-Rendering)。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.