Loading AI tools
元素具有归属度的集合 来自维基百科,自由的百科全书
给定一个论域 ,那么从到单位区间的一个映射称为上的一个模糊集,或的一个模糊子集[1]。
模糊集可以记为。映射(函数)或简记为叫做模糊集的隶属函数。对于每个, 叫做元素对模糊集的隶属度。
模糊集的常用表示法有下述几种:
和传统的集合一样,模糊集也有它的元素,但可以谈论每个元素属于该模糊集的程度,其从低至高一般用 0 到 1 之间的数来表示。模糊集理论是由卢菲特·泽德(1965)所引进的,是经典集合论的一种推广[2]。在经典的集合论中,所谓的二分条件规定每个元素只能属于或不属于某个集合(因此模糊集不是集合);可以说,每个元素对每个集合的归属性(membership)都只能是 0 或 1。而每模糊集则拥有一个归属函数(membership function),其值允许取闭区间(单位区间)中的任何实数,用来表示元素对该集的归属程度。比如设某模糊集的归属函数为 ,而、、为三个元素;如果,,,则可以说 “完全属于”,“完全不属于”,“对的归属度为”(注意没有说“有一半属于”,因为尚未规定的归属度具有什么特殊含义)。作为特例,当归属函数的值只能取 0 或 1 时,就得到了传统集合论常用的指示函数(indicator function)[3]。传统集合在模糊集理论中通常称作“明确集”(crisp set)。
设 为 上的模糊集(记作 ),任取 ,则
称为的截集,而称为阈值或置信水平。将上式中的替换为,记为,称为强截集。
截集和强截集都是经典集合。此外,显然为的核,即;如果,则称为正规模糊集,否则称为非正规模糊集。
截积是数与模糊集的积:
设,,则,与的截积(或称为截集的数乘,记为)定义为:
根据定义,截积仍是上的模糊集合。
分解定理:
设,则
即任一模糊集都可以表达为一族简单模糊集的并。也即,一个模糊集可以由其自身份解出的集合套而“拼成”。
表现定理:
设为上的任何一个集合套,则
是上的一个模糊集,且,有
(1)
(2)
即任一集合套都能拼成一个模糊集。
一个模糊集的模糊度衡量、反映了 A 的模糊程度,一个直观的定义是这样的:
设映射满足下述5条性质:
则称是定义在上的模糊度函数,而为模糊集的模糊度。
可以证明符合上述定义的模糊度是存在的[4],一个常用的公式(分别针对有限和无限论域)就是
其中是参数,称为 Minkowski 模糊度。特别地,当的时候称为 Hamming 模糊度或 Kaufmann 模糊指标,当的时候称为 Euclid 模糊度。
是舆集的一种。
用函数定义,包含下列3项特性称为模糊测度:
①
---函数代0值,表示没有值为空值,用数学0来表示。函数代表示舆集全部带进去了塞满了,用1表示塞满。
②若和, 则.
---是属于的一部分,在里面也可能跟一样大,则
③If ∈, ⊆⊆…,then
---当属于同时包含于,则将代入函数趋小所得的值等同于先趋小再代入函数所求得的值。
主要算子的性质对比表如下(.
表示不满足,-
表示未验证):
算子 | 结合律 | 交换律 | 分配律 | 互补律 | 同一律 | 幂等律 | 支配律 | 吸收律 | 双重否定律 | 德·摩根律 |
---|---|---|---|---|---|---|---|---|---|---|
Zedah | √ | √ | √ | . | √ | √ | √ | √ | √ | √ |
代数 | √ | √ | . | . | √ | . | √ | . | - | √ |
有界 | √ | √ | . | √ | √ | . | √ | √ | - | √ |
线性补偿是指:[5]
算子的并运算 | 幂等律 | 排中律 | 分配律 | 结合律 | 线性补偿 |
---|---|---|---|---|---|
Zadeh | √ | . | √ | √ | . |
代数 | . | . | . | √ | . |
有界 | . | √ | . | . | √ |
Hamacher r = 0 | . | . | . | √ | . |
Yager | . | . | . | √ | . |
Hamacher | . | . | . | √ | . |
Dobois-Prade | . | . | . | √ | . |
可以使用一般的度量理论来描述模糊集之间的距离。在这个意义上,我们需要在模糊幂集上建立一个度量,此外,我们还可能需要将此度量标准化,也即映射到区间上。例如可以这样来标准化 Minkowski 距离:
另一种是使用贴近度概念。在某种意义上,贴近度就是 1 - 距离(这里的距离是上述标准化意义上的距离)。而之所以应用这个变换,是考虑到“度”的概念的直觉反映——距离越近,贴近的程度显然越“高”,因此它恰为距离的反数。
除了距离外,还有一些与模糊集的特殊操作有关系的贴近度定义。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.