在几何学中,筝形六十面体是一种卡塔兰立体,由60个全等的筝形组成,是小斜方截半二十面体的对偶多面体,其拓朴结构与菱形六十面体相同[1],是6个不存在哈密顿路径的卡塔兰立体之一。[2]在图论中,筝形六十面体与菱形六十面体皆对应到筝形六十面体图,也就是说筝形六十面体与菱形六十面体与拓朴同构[3]。
性质
筝形六十面体由60个面、120条边和62个顶点组成。[4]其中,60个面都是全等的筝形。在其62个顶点中,有20个顶点是3个筝形的公共顶点、30个顶点是4个筝形的公共顶点和12个顶点是5个筝形的公共顶点[5],这三种顶点分别可以对应到其对偶多面体小斜方截半二十面体的三种面上[6] 。筝形六十面体不存在哈密顿路径[2],换句话说,即在筝形六十面体中找不到一条沿着筝形六十面体的边,恰好通过每个顶点、且不重复拜访顶点的路径[7]。
组成筝形六十面体的筝形,若将短边长定为单位长,则其长边为:[8]
换句话说即短边长与长边长的比为1:7 + √5/6 ≈ 1:1.539344663...;反过来,长边长与短边长的比为1:3(7-√5)/22 ≈ 1:0.64962709397。[9]
筝形六十面体只有一种二面角,其值为负41分之19与八倍的五平方根之和的反余弦值:[5]
最短边边长为单位长的筝形六十面体,其表面积和体积为:[10]
其内切球半径是一个四次式的根。这个四次式为:[11]
正交投影
筝形六十面体有3种具对称性的投影位置,分别位于其三种顶点上。其中最后两种的对偶图之对称性对应于A2和H2的考克斯特平面[13]。
变体
筝形六十面体可以透过在正二十面体或正十二面体的面中心加入顶点,并加入从新顶点到原始边的新边来构造,[14]因此筝形六十面体在康威多面体表示法中可以用oI或oD来表示[15]。这种几何变换存在一个能连续变化的自由度,因此可以产生许多变体。以从正二十面体构建的版本为例,三角形中心加入顶点连接到边缘可以是垂直于边缘或著不垂直于边缘,这将产生两种不同的筝形六十面体变体。[14]
用途
由于筝形六十面体每个面都是相同的筝形[16],因此有时会被用于制作六十面的骰子[17][18]。此外,在化学中,分子Au42N20模型呈筝形六十面体,并具有一定程度的稳定性。[19]
-
筝形六十面体的骰子
参见
参考文献
外部链接
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.