四维欧几里得几何空间中,超立方体堆砌Tesseractic Honeycomb[1]是三种四维空间堆砌(亦称为填充镶嵌蜂巢体)之一,由超立方体堆砌而成。它亦可被看作是五维空间中由无穷多个超立方体胞组成的二胞角为180°的五维正无穷胞体,因此在许多情况下它被算作是五维的多胞体。

事实速览 超立方体堆砌, 类型 ...
超立方体堆砌
Thumb 一个3x3x3x3棋盘超立方体堆砌的透视投影|220px]]
类型正四维堆砌
家族立方形堆砌
维度4
对偶多胞形自身对偶
类比立方体堆砌
数学表示法
考克斯特符号
英语Coxeter-Dynkin diagram
node_1 4 node 3 node 3 node 4 node 
node_1 4 node 3 node 3 node 4 node_1 
nodes split2 node 3 node 4 node_1 
node_1 4 node 4 node 2 node_1 4 node 4 node 
node_1 4 node 4 node 2 node_1 infin node 2 node_1 infin node 
node_1 infin node 2 node_1 infin node 2 node_1 infin node 2 node_1 infin node 
施莱夫利符号{4,3,3,4}
t0,4{4,3,3,4}
{4,3,31,1}
{4,4}2
{4,3,4}x{∞}
{4,4}x{∞}2
{∞}4
性质
四维{4,3,3}
{4,3}
{4}
欧拉示性数0
组成与布局
棱图Thumb
8 {4,3}
顶点图Thumb
16 {4,3,3}
对称性
考克斯特群, [4,3,3,4]
, [4,3,31,1]
特性
点可递边可递面可递胞可递
关闭

超立方体堆砌在施莱夫利符号中,以{4,3,3,4}表示,透过超立方体胞填密4维空间构成[2]。其顶点图是一个正十六胞体,在每单位立方中,每相邻的两个超立方体胞有四个正方形相遇、八个边相遇、顶点则有16个相遇。超立方体堆砌是平面正方形镶嵌的类比、也是三维空间立方体堆砌在四维空间的类比[3],他们的形式皆为{4,3,...,3,4}[4],为立方形堆砌家族的一部分,在这个家庭的镶嵌都是自身对偶

faviconfaviconfavicon
4 sources

坐标

此蜂巢体(即该堆砌的整体)的顶点皆位于四维空间中的整数点(i,j,k,l)上,对所有的i,j,k,l皆为超立方体边长的整数倍[5],因此边长为1超立方体堆砌也可以视为四维空间中的坐标网格。

favicon
1 sources

结构

超立方体堆砌有许多不同的Wythoff结构。最对称的形式是施莱夫利符号{4,3,3,4}表示正图形,另一种形式是有两种超立方体交替,有如棋盘一般,在施莱夫利符号中用{4,3,31,1}表示。最低的对称性Wythoff结构是在每个顶点附近有16个棱柱形,其施莱夫利符号表示为{∞}4。其可利用截胞(Sterication)来构造。

相关多面体和镶嵌

考克斯特群[4,3,3,4]、node 4 node 3 node 3 node 4 node 产生了31个排列均匀的镶嵌,21具有独特的对称性和20具有独特的几何形状。扩展超立方体堆砌(也被称为截胞超立方体堆砌)其形状在几何上与超立方体堆砌相同。

更多信息 扩展 对称群, 扩展 标记 ...
扩展
对称群
扩展
标记
蜂巢体
(堆砌)
[4,3,3,4]: node_1 4 node 3 node 3 node 4 node  ×1

node_1 4 node 3 node 3 node 4 node  1, node 4 node_1 3 node 3 node 4 node  2, node_1 4 node_1 3 node 3 node 4 node  3, node_1 4 node 3 node_1 3 node 4 node  4,
node_1 4 node 3 node 3 node_1 4 node  5, node 4 node_1 3 node_1 3 node 4 node  6, node_1 4 node_1 3 node_1 3 node 4 node  7, node_1 4 node_1 3 node 3 node_1 4 node  8,
node_1 4 node_1 3 node 3 node 4 node_1  9, node_1 4 node 3 node_1 3 node_1 4 node  10, node_1 4 node_1 3 node_1 3 node_1 4 node  11, node_1 4 node_1 3 node_1 3 node 4 node_1  12,
node_h1 4 node 3 node 3 node 4 node  13

[[4,3,3,4]] node_c3 split1 nodeab_c2 4a4b nodeab_c1  ×2 node_1 4 node 3 node 3 node 4 node_1  (1), node_h1 4 node 3 node 3 node 4 node_h1  (2), node_h 4 node 3 node 3 node 4 node_h  (13), node_1 4 node 3 node_1 3 node 4 node_1  18
node_h1 4 node 3 node_1 3 node 4 node_h1  (6), node_1 4 node_1 3 node 3 node_1 4 node_1  19, node_1 4 node_1 3 node_1 3 node_1 4 node_1  20
[(3,3)[1+,4,3,3,4,1+]]
= [(3,3)[31,1,1,1]]
= [3,4,3,3]
node_c2 split1 nodeab_c1 4a4b nodes 
= nodeab_c1 split2 node_c2 split1 nodeab_c1 
= node_c2 3 node_c1 4 node 3 node 3 node 
×6

node 4 node 3 node_1 3 node 4 node  14, node 4 node_1 3 node 3 node_1 4 node  15, node 4 node_1 3 node_1 3 node_1 4 node  16, node 4 node_h 3 node_h 3 node_h 4 node  17

关闭

参考文献

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.