在四维欧几里得几何空间中,超立方体堆砌(Tesseractic Honeycomb)[1]是三种正四维空间堆砌(亦称为填充、镶嵌或蜂巢体)之一,由超立方体堆砌而成。它亦可被看作是五维空间中由无穷多个超立方体胞组成的二胞角为180°的五维正无穷胞体,因此在许多情况下它被算作是五维的多胞体。
超立方体堆砌在施莱夫利符号中,以{4,3,3,4}表示,透过超立方体胞填密4维空间构成[2]。其顶点图是一个正十六胞体,在每单位立方中,每相邻的两个超立方体胞有四个正方形相遇、八个边相遇、顶点则有16个相遇。超立方体堆砌是平面正方形镶嵌的类比、也是三维空间立方体堆砌在四维空间的类比[3],他们的形式皆为{4,3,...,3,4}[4],为立方形堆砌家族的一部分,在这个家庭的镶嵌都是自身对偶。
坐标
此蜂巢体(即该堆砌的整体)的顶点皆位于四维空间中的整数点(i,j,k,l)上,对所有的i,j,k,l皆为超立方体边长的整数倍[5],因此边长为1超立方体堆砌也可以视为四维空间中的坐标网格。
结构
超立方体堆砌有许多不同的Wythoff结构。最对称的形式是施莱夫利符号{4,3,3,4}表示正图形,另一种形式是有两种超立方体交替,有如棋盘一般,在施莱夫利符号中用{4,3,31,1}表示。最低的对称性Wythoff结构是在每个顶点附近有16个棱柱形,其施莱夫利符号表示为{∞}4。其可利用截胞(Sterication)来构造。
相关多面体和镶嵌
考克斯特群[4,3,3,4]、产生了31个排列均匀的镶嵌,21具有独特的对称性和20具有独特的几何形状。扩展超立方体堆砌(也被称为截胞超立方体堆砌)其形状在几何上与超立方体堆砌相同。
参考文献
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.