Loading AI tools
數論中的定理 来自维基百科,自由的百科全书
费马大定理(亦名费马最后定理,法语:Le dernier théorème de Fermat,英语:Fermat's Last Theorem),其概要为:
以上陈述由17世纪法国数学家费马提出,被称为“费马猜想”,直到英国数学家安德鲁·怀尔斯及其学生理查·泰勒于1995年将他们的证明出版后,才称为“费马最后定理”。这个猜想最初出现费马的《页边笔记》中。尽管费马表明他已找到一个精妙的证明而页边没有足够的空位写下,但仍然经过数学家们三个多世纪的努力,猜想才变成定理。在冲击这个数论世纪难题的过程中,无论是不完全的还是最后完整的证明,都给数学界带来很大的影响;很多的数学结果、甚至数学分支在这个过程中诞生,包括代数几何中的椭圆曲线和模形式,以及伽罗瓦理论和赫克代数等。这也令人怀疑当初费马是否真的找到正确证明。而安德鲁·怀尔斯由于成功证明此定理,获得包括邵逸夫奖在内的数十个奖项。
1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:
“ | 将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信我发现一种美妙的证法,可惜这里的空白处太小,写不下[注 1]。 | ” |
毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发许多数学家对这一猜想的兴趣。数学家们的有关工作丰富数论的内容,推动数论的发展。
费马大定理提出之后的二百年内,对很多不同的特定的,费马大定理被证明。但对于一般情况,人们仍一筹莫展。
1908年,德国人“保罗·弗里德里希·沃尔夫斯凯尔”宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该奖金的吸引力也大幅下降。
1983年,格尔德·法尔廷斯证明莫德尔猜想。作为推论,对于给定的整数,至多存在有限组互素的使得。
1986年,格哈德·弗赖(Gerhard Frey)提出“ε-猜想”:若存在使得,即如果费马大定理是错的,则椭圆曲线
会是谷山-志村猜想的一个反例。格哈德·弗赖的猜想随即被肯尼斯·阿兰·黎贝证实。此猜想显示费马大定理与椭圆曲线及模形式的密切关系。
1995年,安德鲁·怀尔斯和理查·泰勒在一特例范围内证明谷山志村猜想,弗赖的椭圆曲线刚好在这一特例范围内,从而证明费马大定理。
怀尔斯证明费马大定理的过程亦甚具戏剧性。他用七年时间,在不为人知的情况下,得出证明的大部分;然后于1993年6月在一个学术会议上宣布他的证明,并瞬即成为世界头条。但在审查证明的过程中,专家发现一个极为严重的错误。怀尔斯和泰勒之后用近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部分的证明与岩泽理论有关。他们的证明刊在1995年的《数学年刊》(Annals of Mathematics)之上。
在怀尔斯证明之前,沃尔夫斯凯尔委员会(Wolfskehl committee)收到数千个不正确的证明,所有纸张叠加达到约10英尺(3米)的高度[2](p. 295)。仅在第一年(1907—1908年)就提出621个证明,但到了20世纪70年代,各家证明方法的提出已经降至每个月大约3-4个。根据沃尔夫斯凯尔委员会评论家施里希廷(F. Schlichting)的说法,大多数证明都是基于学校教授的基本方法,并且提交证明的人大多“有技术教育但职业生涯失败”[2](pp. 120–125、131–133、295–296)[3]。用数学历史学家霍华德·伊夫斯的话来说,“费马大定理在数学里有一个特殊的现象,即在于它是错误证明数量最多的数学题。”[4]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.