十七边形是指几何学中有17条边及17只角的多边形。其内角和为2700°,有119条对角线。 事实速览 正十七边形, 类型 ...正十七边形一个正十七边形类型正多边形对偶正十七边形(本身)边17顶点17对角线119施莱夫利符号{17}考克斯特符号(英语:Coxeter–Dynkin diagram)对称群二面体群 (D17), order 2×17面积 17 4 a 2 cot π 17 {\displaystyle {\frac {17}{4}}a^{2}\cot {\frac {\pi }{17}}} ≈ 22.735491898417 a 2 {\displaystyle \approx 22.735491898417a^{2}} 内角(度) 2700 17 ∘ = {\displaystyle {\frac {2700}{17}}^{\circ }=\,} 158 14 17 {\displaystyle 158{\frac {14}{17}}} o158.82352941176°内角和2700°特性凸、圆内接多边形、等边多边形、等角多边形、等边图形查论编关闭 正十七边形是有17边的正多边形。正十七边形的每个内角为158.8235294117647058度。 作图方法 作图 1796年高斯证明了可以用尺规作图作出正十七边形,同时发现了可作图多边形的条件。正十七边形其中一个作图方法如下: 英文里,詹·何顿·康威认为heptadecagon是错误的拼法,应为heptakaidecagon。 可作图性亦同时显示2π/17的三角函数可以只用基本算术和平方根来表示。高斯的书Disquisitiones包含了这条等式: cos 2 π 17 = − 1 + 17 + 34 − 2 17 + 2 17 + 3 17 − 34 − 2 17 − 2 34 + 2 17 16 . {\displaystyle \operatorname {cos} {2\pi \over 17}={\frac {-1+{\sqrt {17}}+{\sqrt {34-2{\sqrt {17}}}}+2{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}}}{16}}.} 证明 设正十七边形中心角为 α {\displaystyle \alpha } ,则 17 α = 360 ∘ {\displaystyle 17\alpha =360^{\circ }} 度, 即 16 α = 360 ∘ − α {\displaystyle 16\alpha =360^{\circ }-\alpha } 故 sin 16 α = − sin α {\displaystyle \sin 16\alpha =-\sin \alpha } ,而 sin 16 α = 2 sin 8 α cos 8 α = 2 2 sin 4 α cos 4 α cos 8 α = 2 4 sin α cos α cos 2 α cos 4 α cos 8 α {\displaystyle {\begin{aligned}\sin 16\alpha &=2\sin 8\alpha \cos 8\alpha \\&=2^{2}\sin 4\alpha \cos 4\alpha \cos 8\alpha \\&=2^{4}\sin \alpha \cos \alpha \cos 2\alpha \cos 4\alpha \cos 8\alpha \\\end{aligned}}} 因为 sin α ≠ 0 {\displaystyle \sin \alpha \neq 0} ,则 16 cos α cos 2 α cos 4 α cos 8 α = − 1 {\displaystyle 16\cos \alpha \cos 2\alpha \cos 4\alpha \cos 8\alpha =-1} 又由 2 cos α cos β = cos ( α + β ) + cos ( α − β ) {\displaystyle 2\cos \alpha \cos \beta =\cos(\alpha +\beta )+\cos(\alpha -\beta )} 等,有 2 ( cos α + cos 2 α + ⋯ + cos 8 α ) = − 1 {\displaystyle 2(\cos \alpha +\cos 2\alpha +\cdots +\cos 8\alpha )=-1} 而 cos 15 α = cos 2 α {\displaystyle \cos 15\alpha =\cos 2\alpha } , cos 12 α = cos 5 α {\displaystyle \cos 12\alpha =\cos 5\alpha } ,令 x = cos α + cos 2 α + cos 4 α + cos 8 α {\displaystyle x=\cos \alpha +\cos 2\alpha +\cos 4\alpha +\cos 8\alpha } y = cos 3 α + cos 5 α + cos 6 α + cos 7 α {\displaystyle y=\cos 3\alpha +\cos 5\alpha +\cos 6\alpha +\cos 7\alpha } 有: x + y = − 1 2 {\displaystyle x+y=-{\frac {1}{2}}} 又 x y = ( cos α + cos 2 α + cos 4 α + cos 8 α ) ( cos 3 α + cos 5 α + cos 6 α + cos 7 α ) = 1 2 ( cos 2 α + cos 4 α + cos 4 α + cos 6 α + ⋯ + cos α + cos 15 α ) = − 1 {\displaystyle {\begin{aligned}xy&=(\cos \alpha +\cos 2\alpha +\cos 4\alpha +\cos 8\alpha )(\cos 3\alpha +\cos 5\alpha +\cos 6\alpha +\cos 7\alpha )\\&={\frac {1}{2}}(\cos 2\alpha +\cos 4\alpha +\cos 4\alpha +\cos 6\alpha +\cdots +\cos \alpha +\cos 15\alpha )\\&=-1\\\end{aligned}}} 所以,得 x = − 1 + 17 4 {\displaystyle x={\frac {-1+{\sqrt {17}}}{4}}} y = − 1 − 17 4 {\displaystyle y={\frac {-1-{\sqrt {17}}}{4}}} 另设: x 1 = cos α + cos 4 α {\displaystyle x_{1}=\cos \alpha +\cos 4\alpha } , x 2 = cos 2 α + cos 8 α {\displaystyle x_{2}=\cos 2\alpha +\cos 8\alpha } , y 1 = cos 3 α + cos 5 α {\displaystyle y_{1}=\cos 3\alpha +\cos 5\alpha } , y 2 = cos 6 α + cos 7 α {\displaystyle y_{2}=\cos 6\alpha +\cos 7\alpha } 故有 x 1 + x 2 = − 1 + 17 4 {\displaystyle x_{1}+x_{2}={\frac {-1+{\sqrt {17}}}{4}}} y 1 + y 2 = − 1 − 17 4 {\displaystyle y_{1}+y_{2}={\frac {-1-{\sqrt {17}}}{4}}} 最后,由 cos α + cos 4 α = x 1 {\displaystyle \cos \alpha +\cos 4\alpha =x_{1}} cos α cos 4 α = y 1 2 {\displaystyle \cos \alpha \cos 4\alpha ={\frac {y_{1}}{2}}} 可得 cos α = − 1 + 17 + 34 − 2 17 + 2 17 + 3 17 − 34 − 2 17 − 2 34 + 2 17 16 {\displaystyle \cos \alpha ={\frac {-1+{\sqrt {17}}+{\sqrt {34-2{\sqrt {17}}}}+2{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}}}{16}}} 其为整数加减乘除平方根的组合,故正十七边形可用尺规作出。 外部链接 以下的几个网页均有介绍如何正十七边形的尺规作图: http://www.mathland.idv.tw/cai/r17.html(页面存档备份,存于互联网档案馆) https://web.archive.org/web/20050204005828/http://www.showmath.co.kr/const/polygon/rpoly17.html (朝鲜文) https://web.archive.org/web/19991111063410/http://www.geocities.com/RainForest/Vines/2977/gauss/formulae/heptadecagon.html (英文) http://mathworld.wolfram.com/Heptadecagon.html(页面存档备份,存于互联网档案馆) (英文) Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.