Loading AI tools
来自维基百科,自由的百科全书
在集合论中,邻域(英语:Neighbourhood)指以点 a 为中心的任何开区间,记作:U(a)。
在拓扑学和相关的数学领域中,邻域是拓扑空间中的基本概念。直觉上说,一个点的邻域是包含这个点的集合,并且该性质是外延的:你可以稍微“抖动”一下这个点而不离开这个集合。
在集合论中,有以下几种邻域:
在拓扑学中,拓扑空间X,A,B⊆X,称B是A的邻域,当且仅当以下条件之一成立:
注意:某些作者要求邻域是开集,所以在阅读文献时注意约定是很重要的。
如果S是X的子集,S的邻域是集合V,它包含了包含S的开集U。可得出集合V是S的邻域,当且仅当它是在S中的所有点的邻域。
在度量空间M = (X,d)中,集合V是点p的邻域,如果存在以p为中心和半径为r的开球,
它被包含在V中。
V叫做集合S的一致邻域(uniform neighborhood),如果存在正数r使得对于S的所有元素p,
被包含在V中。
对于r>0集合S的r-邻域是X中与S的距离小于r的所有点的集合(或等价的说是以S中一个点为中心半径为r的所有开球的并集)。
可直接得出r-邻域是一致邻域,并且一个集合是一致邻域当且仅当它包含对某个r值的r-邻域。
参见一致空间。
则V是自然数集合N的邻域,但它不是这个集合的均匀邻域,因为并不是一个固定值。
点 的去心邻域(英语:deleted neighborhood 或 punctured neighborhood)是点 的邻域中减去 后得到的差集。例如,区间 是 在实数轴上的邻域,因此集合 是 的一个去心邻域。需注意的是,给定点的去心邻域实际上不是该点的邻域。在讨论函数极限时,会用到去心邻域的概念。
上述定义适用于开集的概念早已定义的情况。有另一种方式来定义拓扑,也就是先定义邻域系统,再定义开集:若集中每个点皆有一个邻域被包含于集中,则为开集。
在X上的邻域系统是滤子N(x)(在集合X上)到每个X中的x的指派,使得
可以证明这两个定义是兼容的,就是说从使用开集定义的邻域系统获得的拓扑就是最初的拓扑,反之从邻域系统出发亦然。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.