在几何学中,大斜方截半二十面体(英语:Great rhombicosidodecahedron)又称为截角截半二十面体(英语:Truncated icosidodecahedron)是一种半正多面体,由于其具有点可递的性质,因此属于阿基米德立体[1],是十三种由2种以上的正多边形组成的非柱体几何图形之一。
大斜方截半二十面体共有62个面、180条棱和120个顶点,是凸均匀多面体中顶点数最多也是棱数最多的多面体。由于其每个面都具有点对称性(与180°的旋转对称等效),因此是一种环带多面体。
命名
名称截角截半二十面体(英语:Truncated icosidodecahedron)最初由约翰内斯·开普勒给出,但这个名称有歧义,因为直接将截半二十面体透过截角变换的结果,其所形成的四边形面是一个长方形而不是正方形,然而这个立体图形在拓朴上与大斜方截半二十面体等价。 大斜方截半二十面体还有几个不同的名称: |
性质
由30个正方形,20个正六边形和12个正十边形组成,有120个顶点和180条棱。除棱柱和反棱柱以外,如果所有的阿基米德立体具有相同的棱长,大斜方截半二十面体将具有最大的表面积和体积。
若一大斜方截半二十面体的边长为a,则有下列性质:
将一个正十二面体(正二十面体)三十条棱都切一刀,在二十(十二)个顶点处也切一刀,但是要切的薄一点,就可以得到一个大斜方截半二十面体。
在三维笛卡儿坐标系中,以原点为几何中心,边长2τ-2的大斜方截半二十面体的坐标是以下坐标的全偶排列[10]:
- (±1/φ, ±1/φ, ±(3 + φ)),
- (±2/φ, ±φ, ±(1 + 2φ)),
- (±1/φ, ±φ2, ±(−1 + 3φ)),
- (±(2φ − 1), ±2, ±(2 + φ)) and
- (±φ, ±3, ±2φ),
其中即黄金分割率
相关多面体与镶嵌
领结二十面体和领结十二面体的结构可以看做是大斜方截半二十面体的正方形面被分割成两个梯形[11] |
大斜方截半二十面体又称为截角截半二十面体,是正二十面体截半后再经过特殊的截角变换后的结果,其他也是由正二十面体透过康威变换得到的多面体有:
大斜方截半二十面体图
在图论的数学领域中,与大斜方截半二十面体相关的图为大斜方截半二十面体图又称为截角截半二十面体图,是大斜方截半二十面体之边与顶点的图,是一种阿基米德图[12]。
大斜方截半二十面体图与大斜方截半二十面体有相同的拓朴结构,其顶点与边的数量及结构都与阿基米德立体中的大斜方截半二十面体相同,共有120个顶点和180条边,是阿基米德图中,顶点和边数最多的图,且是一个位于零对称性和立方体的阿基米德图[12]。
3阶对称性 |
2阶对称性 |
参见
参考文献
外部链接
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.