在数学的矩阵理论中,一个分块矩阵或是分段矩阵就是将矩阵分割出较小的矩形矩阵,这些较小的矩阵就称为区块。换个方式来说,就是以较小的矩阵组合成一个矩阵。分块矩阵的分割原则是以水平线和垂直线进行划分。分块矩阵中,位在同一行(列)的每一个子矩阵,都拥有相同的列数(行数)。 事实速览 线性代数, 向量 ... 线性代数 A = [ 1 2 3 4 ] {\displaystyle \mathbf {A} ={\begin{bmatrix}1&2\\3&4\end{bmatrix}}} 向量 · 向量空间 · 基底 · 行列式 · 矩阵 向量 标量 · 向量 · 向量空间 · 向量投影 · 外积(向量积 · 七维向量积) · 内积(数量积) · 二重向量 矩阵与行列式 矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 · 克罗内克积 线性空间与线性变换 线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 查论编 关闭 通过将大的矩阵通过分块的方式划分,并将每个分块看做另一个矩阵的元素,这样之后再参与运算,通常可以让计算变得清晰甚至得以大幅简化。例如,有的大矩阵可以通过分块变为对角矩阵或者是三角矩阵等特殊形式的矩阵。 范例 如下矩阵 P = [ 1 1 2 2 1 1 2 2 3 3 4 4 3 3 4 4 ] {\displaystyle P={\begin{bmatrix}1&1&2&2\\1&1&2&2\\3&3&4&4\\3&3&4&4\end{bmatrix}}} 可以分成四个 2×2 区块 P 11 = [ 1 1 1 1 ] , P 12 = [ 2 2 2 2 ] , P 21 = [ 3 3 3 3 ] , P 22 = [ 4 4 4 4 ] {\displaystyle P_{11}={\begin{bmatrix}1&1\\1&1\end{bmatrix}},P_{12}={\begin{bmatrix}2&2\\2&2\end{bmatrix}},P_{21}={\begin{bmatrix}3&3\\3&3\end{bmatrix}},P_{22}={\begin{bmatrix}4&4\\4&4\end{bmatrix}}} 分块后的矩阵可以写作 P = [ P 11 P 12 P 21 P 22 ] {\displaystyle P={\begin{bmatrix}P_{11}&P_{12}\\P_{21}&P_{22}\\\end{bmatrix}}} 分块矩阵乘法 一个分块的矩阵乘法可以仅用包含算符的子矩阵来表述。 给定一个 ( m × p ) {\displaystyle (m\times p)} 矩阵 A {\displaystyle \mathbf {A} } 有 q {\displaystyle q} 行 s {\displaystyle s} 列 A = [ A 11 A 12 ⋯ A 1 s A 21 A 22 ⋯ A 2 s ⋮ ⋮ ⋱ ⋮ A q 1 A q 2 ⋯ A q s ] {\displaystyle \mathbf {A} ={\begin{bmatrix}\mathbf {A} _{11}&\mathbf {A} _{12}&\cdots &\mathbf {A} _{1s}\\\mathbf {A} _{21}&\mathbf {A} _{22}&\cdots &\mathbf {A} _{2s}\\\vdots &\vdots &\ddots &\vdots \\\mathbf {A} _{q1}&\mathbf {A} _{q2}&\cdots &\mathbf {A} _{qs}\end{bmatrix}}} 另外 一个 ( p × n ) {\displaystyle (p\times n)} 矩阵 B {\displaystyle \mathbf {B} } 有 s {\displaystyle s} 行且 r {\displaystyle r} 列 B = [ B 11 B 12 ⋯ B 1 r B 21 B 22 ⋯ B 2 r ⋮ ⋮ ⋱ ⋮ B s 1 B s 2 ⋯ B s r ] , {\displaystyle \mathbf {B} ={\begin{bmatrix}\mathbf {B} _{11}&\mathbf {B} _{12}&\cdots &\mathbf {B} _{1r}\\\mathbf {B} _{21}&\mathbf {B} _{22}&\cdots &\mathbf {B} _{2r}\\\vdots &\vdots &\ddots &\vdots \\\mathbf {B} _{s1}&\mathbf {B} _{s2}&\cdots &\mathbf {B} _{sr}\end{bmatrix}},} 矩阵乘积 C = A B {\displaystyle \mathbf {C} =\mathbf {A} \mathbf {B} } 可被分成块来计算,矩阵 C {\displaystyle \mathbf {C} } 是 ( m × n ) {\displaystyle (m\times n)} 的矩阵有 q {\displaystyle q} 行 r {\displaystyle r} 列,你的矩阵 C {\displaystyle \mathbf {C} } 中的分割矩阵可以在乘法中被相乘: C α β = ∑ γ = 1 s A α γ B γ β {\displaystyle \mathbf {C} _{\alpha \beta }=\sum _{\gamma =1}^{s}\mathbf {A} _{\alpha \gamma }\mathbf {B} _{\gamma \beta }} Wikiwand - on Seamless Wikipedia browsing. On steroids.