Remove ads

間隙連接(英語:Gap junction),或稱縫隙連接,是細胞連接的一種,神經細胞之間的間隙連接又稱電突觸Electrical synapse),是一種特化的動物細胞間連接,廣泛地存在於各種動物組織中。間隙連接通過連接細胞的胞質,允許多種小分子、離子和電信號直接通過,這一過程有一定的選擇性,間隙連接的開閉往往受到調控。[1]

快速預覽 間隙連接, 標識字符 ...
關閉
Thumb
間隙連接

形成間隙連接的兩個細胞的細胞膜往往平行而且緊密地排列,留有納米尺度的縫隙,兩個分處在相鄰細胞質膜上的連接子(Connexon)對齊連接,形成一個狹窄的通道,大量的通道排列在這一縫隙中,進而構成了間隙連接。[1]

植物細胞胞間連絲與動物細胞的間隙連接相似。

除了完全發育的骨骼肌細胞以及不固定的細胞,例如紅細胞,間隙連接在人體中各種組織中幾乎處處存在。但尚未在一些低等動物,例如多孔動物門中,發現間隙連接。 [2]

結構

脊椎動物中,連接子是由連接蛋白(Connexin)組成的同構或異構六聚體。無脊椎動物的間隙連接由無脊椎連接蛋白(Innexin)構成,與脊椎動物的連接蛋白之間沒有明顯的同源序列[3]儘管序列上存在差異,但無脊椎動物連接蛋白在結構和功能上與脊椎動物的連接蛋白極為相似,以至於可以宣稱它幾乎以相同的方式構成了間隙連接。[4][5][6]泛連接蛋白英語Pannexin(Pannexin)家族原本被認為也是形成細胞間通道的一種蛋白,但其實際上作為一個單層膜通道讓細胞與胞外環境進行交流,例如交換鈣離子以及ATP[7]

間隙連接的通道寬度在2 nm到4 nm之間。兩個細胞的相應連接子相互對齊。每個連接蛋白有四個跨膜單位。有時,多個間隙連接聚集成一種稱為「斑」(Plaque)的宏觀結構。

由兩個相同的半通道,即連接子,形成的間隙連接稱為「同型」(homotypic),否則稱為「異型」(heterotypic)。另外,由六個相同的連接蛋白形成的連接子稱為「同聚」(homomeric),否則成為異聚(heteromeric)。間隙連接的結構細節被認為與其功能密切相關。但是該關係的細節尚不清楚。

編碼間隙連接的基因大致根據序列相似性分為三類:A,B和C(例如GJA1GJC1)。應該注意,基因本身並不能編碼間隙連接,而只能編碼連接蛋白。另一種通用的連接蛋白分類方法是基於蛋白的分子量(例如connexin26,connexin43,connexin30.3等)。

Remove ads

間隙連接的結構層次

  1. 一個連接蛋白有4個跨膜結構域
  2. 6個連接蛋白構成一個連接子,一個連接子又稱為半通道;
  3. 兩個半通道跨膜連接在一起構成一個間隙連接通道;
  4. 上百個間隙連接通道構成一個「斑」。

間隙連接通道的性質

Thumb
雖然光學顯微鏡圖像不允許我們直接看到連接子(Connexon),但讓我們看到了熒光染料注入一個細胞移動到相鄰細胞時,間隙連接就被已知是存在的[8]
  1. 間隙連接允許細胞之間直接的電信號傳導。不同的間隙連接具有不同的單通道的電導,從30 pS到500 pS不等。
  2. 允許細胞之間的化學通信。一些第二信使分子,例如肌醇三磷酸(IP3)和離子,可以通過間隙連接在細胞間進行傳遞。不同種類的間隙連接也對不同的分子有不同的選擇通透性。
  3. 一般來說,分子量小於1000道爾頓(Dalton,簡寫為Da)的分子可以通過間隙連接擴散到相鄰細胞中,不同的連接子構造有不同的孔徑尺寸和選擇性。較大的分子,例如蛋白質核酸,一般不能通過間隙連接。
  4. 其可以確保分子和電流通過間隙連接而不泄漏進入細胞間隙中。

功能

簡單地說,間隙連接可被視為電信號、小分子和離子的細胞間通路。控制這一通路將會產生複雜的效應,現分條陳述如下:

胚胎、組織和器官發育

在20世紀80年代,間隙連接通訊的一些細微而重要的作用被發現了。研究發現,在胚胎細胞中加入抗連接蛋白抗體可以阻斷間隙連接的物質交流。在間隙連接被阻斷的區域的胚胎最終發育不正常。[9][10]研究者隨後對抗體阻斷間隙連接的機制進行了系統的研究。這些研究表明,間隙連接似乎是細胞極性[11]和動物的對稱性[12][13]發育的關鍵因素。間隙連接對胚胎發育晚期細胞的分化也有重要作用。[14][15][16][17]間隙連接還被發現在藥物生效的信號傳導過程中承擔了主要作用[18],相應的,一些藥物被證明可以阻斷間隙連接通道。[19]

間隙連接與旁觀者效應

細胞死亡

「旁觀者效應」的含義是無辜的旁觀者被殺,這也是由間隙連接引起的。當細胞因疾病或受傷而受到損害時,就會將死亡信息傳送到與死亡細胞相連的相鄰細胞上。這可能導致其他未受影響的健康的「旁觀」細胞也會死亡。[20]因此,旁觀者效應在疾病的細胞學研究中是很重要的。[21][22][23][24]除疾病導致的旁觀者效應外,輻射或機械導致的細胞損傷及傷口癒合過程中的旁觀者效應也受到了研究。[25][26][27][28][29]疾病似乎也會影響縫隙連接在傷口癒合中發揮功能的能力。[30][31]

電信號耦合

在大多數動物體中,間隙連接將細胞電耦合和化學耦合。電耦合可以相對快速地進行。本節中提及的組織(以及器官和系統)的有一些廣為人知的受間隙連接協調的功能,這些細胞間信號傳遞過程在微秒或更短的時間尺度內發生。

心臟

間隙連接在心肌中扮演重要角色。通過間隙連接的電耦合作用,心肌的所有肌細胞可同步工作。

神經系統

神經元之間的縫隙連接常被稱為電突觸。在間隙連接結構被發現之前,電生理學的研究者就已利用電測量方法發現了電突觸。電突觸突觸在整個中樞神經系統中都存在,特別是在新皮層、海馬體、前庭核、丘腦網狀核、鎖膜下核、下橄欖核、三叉神經的中腦核、腹側蓋區、嗅球、視網膜和脊椎動物脊髓等區域。[32]

視網膜

視網膜的神經元中存在廣泛的間隙連接,間隙連接既存在於同種細胞之間,又存在於異種細胞之間。

耳蝸

目前已知耳蝸的柯蒂氏器的支持細胞,血管層內的細胞,以及結締組織纖維細胞間有廣泛的間隙連接存在。其功能被認為與耳蝸內的離子轉運有關,對耳蝸的聽覺轉導至關重要。 [33]

參見

參考文獻

外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.

Remove ads