Remove ads

狀態轉移矩陣(state-transition matrix)是控制理論中的矩陣,是時間和初始時間的函數,可以將時間的狀態向量和此矩陣相乘,得到時間時的狀態向量。狀態轉移矩陣可以用來找線性動態系統的通解。

Remove ads

線性系統的解

狀態轉移矩陣用來找以下形式線性系統狀態空間下的解:

,

其中為系統狀態,為輸入信號,而為時間時的初始條件。利用狀態轉移矩陣,其解如下[1][2]

第一項為零輸入響應(zero-input response),第二項為零狀態響應(zero-state response)。

Remove ads

Peano-Baker級數解

更廣義的狀態轉移矩陣可以用Peano-Baker級數解求得

其中單位矩陣。此矩陣均勻收斂到一個存在而且唯一的解,而且是絕對收斂[2]

Remove ads

其他性質

狀態轉移矩陣可以表示為下式

其中基礎矩陣英語Fundamental matrix (linear differential equation),滿足下式

狀態轉移矩陣是的矩陣,是會映射到本身的線性映射。若,再給定任意時間下的狀態,另一個時間的狀態可由以下映射求得

狀態轉移矩陣恆滿足以下的關係:

and
對於所有的,其中為單位矩陣[3]

也有以下的性質:

1.
2.
3.
4.

若系統是時不變系統,可以將定義為

在時變系統的例子中,可能有許多不同的函數滿足上述條件,而解和系統的結構有關。在分析時變系統的解之前,需要先確定其狀態轉移矩陣。

Remove ads

註解

參考資料

相關條目

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.

Remove ads