Remove ads

測度空間測度論的基本概念,可以看做是面積概念的推廣,由一個基本的集合 以及基於這集合的某些子集合所構成的一個新的集合 ,這新集合會滿足 σ-代數的性質,直覺的講,對 中的元素我們都可以用某種方法去「測量」其大小、面積或概率等,其真正意義要看所在空間 來決定。和一個定義在 上滿足某些特別性質的(非負)函數 ,也就是測度,測度空間就由這三部分,,所構成。測度空間的一個實例是概率空間

可測度空間(measurable space)包含前兩部分但不含測度。

Remove ads

定義

一個測度空間包含三部分資訊 ,且滿足下列條件:[1][2]

  • 非空集合
  • 上的一個 σ-代數,也就是滿足某些條件的 中的一些子集構成的集合。
  • 上的測度,換句話講,是一個定義在 上的有特別性質的(非負)函數。
Remove ads

例子

對集合

定義

則根據測度的可數可加性, 另根據測度的定義,為一個測度空間。

本例中的測度對應於伯努利分佈

Remove ads

參見

參考文獻

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.

Remove ads