Loading AI tools
来自维基百科,自由的百科全书
在可計算性理論中的形式語言理論中,泵引理(Pumping lemma)聲稱給定類的任何語言可以被「抽吸」並仍屬於這個類。一個語言可以被抽吸,如果在這個語言中任何足夠長的字符串可以分解成片段,其中某些可以任意重複來生成語言中更長的字符串。這些引理的證明典型的需要計數論證比如鴿籠原理。
兩個最重要例子是正則語言的泵引理和上下文無關語言的泵引理。鄂登引理是另一種更強的上下文無關語言的泵引理。
這些引理可以用來確定特定語言不在給定語言類中。但是它們不能被用來確定一個語言在給定類中,因為滿足引理是類成員關係的必要條件,但不是充分條件。
泵引理是1961年由 Y. Bar-Hillel、M. Perles 和 E. Shamir首次發表的[1]。
假設是正則語言,則存在整數,對任意字符串且(n為泵長度,可理解為正則語言等效的極小化DFA的狀態個數),可以將寫成的形式,使得以下說法成立:
通過泵引理可以用反證法證明L不是正則語言。證明的時候需要注意以下幾點:
一個證明L不是正則語言的例子
並不是所有滿足泵引理的語言都是正則語言。就是這樣的一個例子,它雖然滿足泵引理,但並不是正則語言。Jeffrey Jaffe發展出了一個普遍化的泵引理,使它可以證明一個語言是正則語言。它的描述如下:
一個可行的用於判斷一個語言是否為正則語言的方法,可以參見邁希爾-尼羅德定理。一般來說證明一個語言是正則的,可以通過對該語言構造一個有限狀態機或正則表達式來實現。
若 L 是上下文無關語言,則存在一常數 n > 0 使得語言 L 中每個字串 w 的長度 |w| ≧ n,而當 w = uvxyz 時:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.