法拉第電磁感應定律(英語:Faraday's law of electromagnetic induction)簡稱「法拉第定律」,是電磁學的一條基本定律,也是變壓器電感元件及多種摩打發電機螺線管的根本運作原理。定律指出:[1]

米高·法拉第肖像畫

此定律預測磁場如何與電路相互作用以產生電動勢,這種現象稱為電磁感應

雖然約瑟·亨利在1830年的獨立研究中比法拉第早發現這一定律,但其並未發表;米高·法拉第則於1831年發現此定律,命名為法拉第定律。

本定律可用以下的公式表達:[2]

其中:

電動勢,單位為伏特
ΦB是通過電路的磁通量,單位為韋伯

電動勢的方向(公式中的負號)由楞次定律提供。「通過電路的磁通量」的意義會由下面的例子闡述。

傳統上有兩種改變通過電路的磁通量的方式。至於感應電動勢時,改變的是自身的電場,例如改變生成場的電流(就像變壓器那樣)。而至於動生電動勢時,改變的是磁場中的整個或部份電路的運動,例如像在同極發電機中那樣。

在物理課堂中常展示電磁感應現象的感應線圈

用詞

電磁感應現象不應與靜電感應混淆。電磁感應將電動勢與通過電路的磁通量聯繫起來,而靜電感應則是使用另一帶電荷的物體使物體產生電荷的方法。

麥克斯韋-法拉第方程式

本節是一段題外話,作用是區分本條目中的「法拉第定律」及麥克斯韋方程組中用同一個名字的∇×E方程式。於本條目中∇×E方程式會被稱為麥克斯韋-法拉第方程式

麥克斯韋於1855年總結出法拉第定律的旋度版本,而黑維塞則於1884年將定律重寫成旋度方程式:

其中

代表 旋度
代表 電場強度(V/m)
代表 磁通量密度(Wb/m2
 代表 當方位向量 r 不變下的時間偏導數

方程式的意義是,如果電場的空間依賴在紙面上成逆時針方向(經右手定則,得旋度向量方向為出紙面),那麼磁場會因時間而更少指出紙面,更多地指入頁面(跟旋度向量異號)。方程式跟磁場的變量有關係。故磁場不一定要指向紙面,只需向該方向轉動即可。

本方程式(在本條目中被稱為麥克斯韋-法拉第方程式)是麥克斯韋方程組的四條方程式之一。

在麥克斯韋-法拉第方程式中,黑維塞用的是時間偏導數。不使用麥克斯韋用過的時間全導數,而使用時間偏導數,這樣做使得麥克斯韋-法拉第方程式不能說明動生電動勢。[註 1]。然而,麥克斯韋-法拉第方程式很多時候會被直接稱為「法拉第定律」。[3]

在本條目中「法拉第定律」一詞指的是通量方程式,而「麥克斯韋-法拉第方程式」指的則是黑維塞的旋度方程式,也就是現在的麥克斯韋方程組中的那一條。

通過表面的磁通量及圈中的電動勢

Thumb
圖一:面積分的定義需要把面分成小的面積元。每個元素跟一個向量dA聯繫,該向量的大小等於面積元的面積,而方向則是跟面積元垂直並向外。
Thumb
圖二:於空間內有定義的一向量場Frt),及以曲線∂Σ為邊界的一表面Σ,在場的積分範圍內以速度v移動。

法拉第電磁感應定律用到通過一表面Σ的磁通量ΦB,其積分形式定義如下:

其中dA為移動面Σ(t)的面積元,B為磁場,B·dA為向量點積。見圖一。更多細節見面積分磁通量條目。設該表面有一個開口,邊界為閉合曲線∂Σ(t)。見圖二。

當通量改變時,把一電荷在閉合曲線中∂Σ(t)移一圈(每單位電荷)所作的功,也就是電動勢,可由法拉第電磁感應定律求得:

其中:

電動勢,單位為伏特
ΦB磁通量,單位為韋伯。電動勢的方向(公式中的負號)由楞次定律提供。

設有一緊纏線圈,法拉第電磁感應定律指出:

其中N為線圈圈數;
ΦB為通過圈的磁通量,單位為韋伯。

在選擇路徑∂Σ(t)求電動勢時,路徑須滿足兩個基本條件:(一)路徑閉合;(二)路徑必需能描述到電路各部分的相對運動(這就是∂Σ(t)中變量為時間的原因)。路徑並一定要跟隨電流的流動路線,但用通量定律求出的電動勢,理所當然地會是通過所選路徑的電動勢。假若路徑並不跟隨電流的話,那麼那電動勢可能不是驅動着電流的那一電動勢。

例一:空間變強磁場

Thumb
圖三:閉合的長方形線圈,以速率v沿x軸移動,其所處的磁場Bx的位置而變。

考慮圖三的長方形線圈,它在xy平面上向x方向以速率v移動。因此,線圈中心xC滿足v = dxC/dt。線圈在y方向的長度為ℓ,x方向的寬度為w。一不隨時間改變,而隨x方向改變的磁場B(x)指向z方向。左邊的磁場為B(xC − w/2),右邊的磁場為B(xC + w/2)。電動勢可直接求得,或由上述的法拉第電磁感應定律求得。

洛倫茲力法

在線圈左邊的一電荷q,所受的洛倫茲力qBk = −qvB(xC − w/2)jjk分別為y方向及z方向的單位向量,見向量積),因此左邊整段電線的電動勢(單位電荷所作的功)為vℓB(xC − w/2)。可用相同的論述,求出右邊電線的電動勢為vℓB(xC + w/2)。兩股電動勢互相抵抗,將正電荷推向線圈底部。由於這時磁場的強度會向x方向增強,所以右邊的力最強,電流會順時針流動:使用右手定則,電流所產生的磁場會抵抗外加的磁場。[註 2]驅動電流的電動勢必須向逆時針方向增加(抵抗電流)。把電動勢向逆時針方向加起來得:

法拉第定律法

線圈上任何位置通過線圈的磁通量為

其正負取決於表面的垂直線與B的方向之異同。如果表面垂直線跟感應電流的B同一方向,式子為負。此時通量的時間導數(使用微分的鏈式法則萊布尼茨定則的通用形式求出)為:

(其中v = dxC/dt為線圈於x方向的運動速率),所以

跟之前一樣。

這兩種方法一般來說都一樣,但視乎例子而定,其中一種有時可能會比較實用。

例二:均勻磁場中的運動環路

Thumb
圖四:矩形線圈以角速率ω轉動,其所處的磁場B大小固定,並向外呈放射狀指出。上下兩塊碟片的邊沿會導電,而電流則由旁邊的電刷收集。

圖四為由上下兩塊帶導電邊沿的碟片所組成的轉軸,上面的電線環路垂直地連接着兩塊碟片。整組裝置在磁場中旋轉,該磁場向外呈放射狀指出,但其大小不隨方向變化。一向外的迴路從邊沿上把電流收集起來。在收集迴路的位置上,向外的磁場與迴路位於同一個平面上,因此收電迴路並不對電路的磁通量造成影響。電動勢可直接求出,或使用上文的法拉第定律求出。

洛倫茲力法

這個案中,在移動環路中那兩根垂直的電線裏,洛倫茲力向下驅動着電流,因此電流從上碟片流向下碟片。在碟片的導電邊沿內,洛倫茲力與邊沿垂直,所以邊沿上並沒有電動勢,環路中的水平部分也沒有。電流通過外加的迴路從下邊沿傳到上邊沿,而該迴路位於磁場的平面上。因此,迴路中的洛倫茲力與迴路平行,在這迴路中並沒有生成電動勢。穿過電流通道,到達電流反方向流動的地方,功只在移動環路垂直電線中抵抗洛倫茲力,其中

因此電動勢為

其中ℓ為環路中的垂直長度,與角轉動率相關的速度可由v = r ω求出,而r = 碟片半徑。注意,在任何跟環路轉動並連接上下邊沿的路徑中,所作的功都一樣

法拉第定律法

一個直覺上很吸引但錯誤的通量定則使用法是,將通過電流的通量當成只是ΦB = Bwℓ,其中w為移動環路的寬度。這數目與時間沒有關係,所以這方法會不正確地預測出無生成電動勢。這套論述的缺陷在於它並沒有考慮到整個電路,而整個電路是閉合的環路。

使用通量定則時,我們必須顧及整個電路,其中包括通過上下碟片邊沿的路徑。我們可以選擇一通過兩道邊沿及移動環路的任意閉合路徑,而通量定則會找出該路徑的電動勢。任何有一部分連接移動環路的路徑,都會表達到電路移動部分的相對運動。

作為一個路徑例子,選擇在上碟片按照轉動方向,並下碟片按照轉動反方向穿過電路(由圖四的箭號表示)。在這情況下,對與迴路成角θ的移動環路而言,圓柱體的一部分面積A = rℓθ為電路的一部分。這面積與磁場垂直,所以造成了這個大小的通量:

其中式子為,這是因為右手定則指出,電流環路所產生的磁場,與外加的磁場方向相反的緣故。由於這是通量中唯一一個跟隨時間轉變的部分,所以通量定則預測的電動勢為

與使用洛倫茲力法的計算答案一致。

現在嘗試不同的路徑。跟隨一條選擇餘下部分通過邊沿的路徑。那麼耦合磁通量會隨θ增加而減少,但右手定則會指出把電流環路到外加磁場上去,因此這條路徑跟第一條路徑的電動勢相同。任何迴路的組合都會對電動勢產生相同的結果,因此跟隨哪一條路徑實際上並不重要。

直接從通量變量中推導

Thumb
圖五:圖四的簡化版本。環路在靜止且均勻的磁場中,以速率v滑動。

以上使用閉合路徑求電動勢的方法,看起來是取決於路徑幾何的細節。相反地,使用勞侖茲力則沒有這樣的限制。所以有需要加深對通量定則的理解,有關路徑等同及路徑選取時的會漏掉的細節。

圖五是圖四的理想化版本,當中圓柱體被展開成了平面。同樣的路徑分析依然有效,但是還有一個可以簡化的地方。電路中與時間無關的方面,並不能夠影響通量隨時間的變化率。例如,環路以均速滑動時,電流通過環路流動的細節,並不取決於時間。與其考慮求電動勢時環路選取的細節,不如考慮環路移動時所掃過的磁場面積。這相當於找出電路通量的切斷率。[註 3]這個說法提供了一個方法,可直接求出通量變化率,而不需要考慮電路上各種路徑選取,隨時間而變化的細節。跟使用洛倫茲力一樣,很明顯地,任何兩條連接移動環路的路徑,都會產生相同的通量變化率,不同之處只在於它們如何與環路相交。

圖五中,單位時間內掃過的面積為dA/dt = vℓ,跟選取的環路細節無關,所以可經法拉第電磁感應定律求出電動勢:[註 4]

電路勢的路徑的不依賴性表明,如果滑動環路被實心導電板所取代,又或是更複雜的某種變形表面,分析都是一樣的:找出電路移動部分掃過面積的通量。相近地,如果圖四的移動環路被一360°的實心導電圓柱體所取代,掃過面積的計算就跟只有一個環路時是完全一樣的。故此,對圓柱體及實心導電板的個案而言,法拉第定律所預測的電動勢完全一樣,更甚者,以有孔板為壁的圓柱體的個案也一樣。但是注意,這個電動勢所導致的流動電流是一樣的,因為電阻決定電流。

麥克斯韋-法拉第方程式

Thumb
圖六:開爾文-斯托克斯定理用圖,其中曲面Σ的邊界 ∂Σ,其方向由向外的向量n右手定則規定。

變化中的磁場會生成電場;這個現象由麥克斯韋-法拉第方程式描述:[註 5]

其中:

代表旋度
E電場強度
B磁通量密度

這條方程式是現代麥克斯韋方程組內的其中一條,很多時候被稱為法拉第定律。然而,由於它只含有一個時間偏導數,它的應用只限於在隨時間變化的磁場中靜止電荷的情況。它並不能說明帶電粒子在磁場中移動的電磁感應狀況。

它可以用開爾文-斯托克斯定理寫成積分形式:[4]

其中把導數移至積分前這個動作,需要一與時無關的曲面Σ(在這裏被視為偏導數解釋的一部分),見圖六:

Σ為一被閉合圍道∂Σ包圍的曲面;Σ∂Σ皆為固定的,不隨時間變動;
E為電場強度;
d為圍道∂Σ的一無限小向量元;
B磁通量密度
dA為曲面Σ的一無限小向量元,其大小相等於一塊無限小曲面,而其方向與該塊曲面成正交

dℓ和dA都具有正負模糊性;要得到正確的正負號,需要使用右手定則,解釋詳見開爾文-斯托克斯定理條目。對一平面Σ而言,曲線∂Σ的正路徑元dℓ,其定義由右手定則所規定,就是當右手姆指跟表面Σ的垂直線n同一方向時,其他手指所指的那一個方向。

圍繞着∂Σ的積分叫曲線積分或路徑積分。麥克斯韋-法拉第方程式右邊的曲面積分,是通過Σ的磁通量ΦB的明確表達式。注意E的非零路徑積分,跟電荷產生電場的表現不一樣。由電荷生成的電場能以標量場的梯度表達,為卜瓦松方程式的解,並且路徑積分為零。見梯度定理

積分方程式對通過空間的任何路徑∂Σ成立,也對任何以該路徑為邊界的的表面Σ成立。注意,但是已知在這方程式裏,∂ΣΣ隨時間而改變。這個積分形式不能用於運動電動勢,因為Σ跟時間無關。注意這方程式內並沒有電動勢 ,所以確實不能夠在不引入洛倫茲力的情況下計算出功。

Thumb
圖七:由曲線∂Σ的向量元d在時間dt以速率v移動時掃過的面積。

使用完整的洛倫茲力計算電動勢:

法拉第電磁感應定律的一個描述,比麥克斯韋-法拉第方程式的積分形式更通用(見洛倫茲力),如下:

其中∂Σ(t)為圍着運動表面Σ(t)的閉合路徑,而v為運動速率。見圖二。注意上面用的是時間導數,而不是時間導數,意指Σ(t)的時間差異必須被微分所包括。被積函數中,曲線d的元以速率v移動。

圖七為磁力是如何促成電動勢作出了詮釋,而電動勢就在上面方程式的左邊。曲線∂Σ部分d,在時間dt以速率v移動時掃過的面積為(見向量積的幾何意義):

所以在時間dt間通過∂Σ為邊的表面中這一部分的磁通量變量ΔΦB為:

如果我們把這些通過所有部分d的ΔΦB的作用加在一起,就可以得到法拉第定律對磁力的促成作用。也就是,這個項跟運動電動勢有關係。

例三:移動觀測者的視點

再次討論圖三的例子,但這次以移動觀測者的參考系,帶出電場與磁場間以及運動感應電動勢的密切關係。[註 6]假設一環路觀測者與環路一起移動。觀測者以洛倫茲力及法拉第電磁感應定律計算環路的電動勢。由於這觀測者與環路一起移動,觀測者看不到環路的運動,以及零v×B。然而,由於磁場隨x位置變化,所以觀測者看到時間變強的磁場,也就是:

其中k為指向z方向的單位向量。[註 7]

洛倫茲力定律版本

麥克斯韋-法拉第方程式指出移動觀測者在y方向所見的電場Ey可由下式表示(見旋度):

下式使用了鏈鎖律

求解Ey,準確到一個對環路積分沒有作用的常數,得:

使用洛倫茲力定律,得一個電場分量,觀測者於時間t得環路的電動勢為:

這個結果跟靜止觀測者的個案一致,他看到的是中點xC移到xC + vt。然而,移動觀測者的結果中,洛倫茲力看起來只有分量,而靜止觀測者的則只有分量。

法拉第電磁感應定律

使用法拉第電磁感應定律,與xC一起移動的觀測者看到磁通量的變化,但環路看起來並沒有移動:環路的中心xC被固定了,這是因為觀測者與環路一起移動着。通量則是:

其中右式為負,這是因為表面的垂直線與外加磁場各自指向相反的方向。現在從法拉第電磁感應定律得出的電動勢是:

答案是一樣的。時間導數走進了積分裏面,這是因為積分的上下限並不取決於時間。又一次,鏈式定律被用於把時間導數轉化成x導數。

靜止觀測者認為該電動勢是運動電動勢,而移動觀測者則認為是感應電動勢。[5]

作為兩種不同現象的法拉第定律

有些物理學家注意到法拉第定律是一條描述兩種現象的方程式:由磁力在移動中的電線中產生的動生電動勢,及由磁場轉變而成的電力所產生的感應電動勢。就像理查德·費曼指出的那樣:[6]

所以「通量定則」,指出電路中電動勢等於通過電路的磁通量變化率的,同樣適用於通量不變化的時候,這是因為場有變化,或是因為電路移動(或兩者皆是)……但是在我們對定則的解釋裏,我們用了兩個屬於完全不同個案的定律:「電路運動」的和「場變化」的
我們不知道在物理學上還有其他地方,可以用到一條如此簡單且準確的通用原理,來明白及分析兩個不同的現象
— 理查德·P·費曼 《費曼物理學講義》

格里夫斯的書中也有類似陳述。[7]

歷史

法拉第定律最初是一條基於觀察的實驗定律。[8][9]後來被正式化,其偏導數的限制版本,跟其他的電磁學定律一塊被列麥克斯韋方程組的現代黑維塞版本。

法拉第電磁感應定律是基於法拉第於1831年所作的實驗。這個效應被約瑟·亨利於大約同時發現,但法拉第的發表時間較早。[10][11]

見麥克斯韋討論電動勢的原著。[12]

於1834年由波羅的海德國科學家海因里希·楞次發現的楞次定律,提供了感應電動勢的方向,及生成感應電動勢的電流方向。

應用

發電機

Thumb
圖八:法拉第碟片發電機。碟片以角速率ω旋轉,在靜磁場B中環行地掃過導電的半徑。磁洛倫茲力v×B,沿着導電半徑到導電邊沿驅動着電流,並從那裏經由下電刷及支撐碟片的軸完成電路。因此,電流由機械運動所產生。

由法拉第電磁感應定律因電路及磁場的相對運動所造成的電動勢,是發電機背後的根本現象。當永久性磁鐵相對於一導電體運動時(反之亦然),就會產生電動勢。如果電線這時連着電負載的話,電流就會流動,並因此產生電能,把機械運動的能量轉變成電能。例如,基於圖四鼓輪發電機。另一種實現這種構想的發電機就是法拉第碟片,簡化版本見圖八。注意使用圖五的分析,或直接用洛倫茲力定律,都能得出使用實心導電碟片運作不變的這一結果。

在法拉第碟片這一例子中,碟片在與碟片垂直的均勻磁場中運動,導致一電流因洛倫茲力流到向外的軸臂裏。明白機械運動是如何成為驅動電流的必需品,是很有趣的一件事。當生成的電流通過導電的邊沿時,這電流會經由安培環路定理生成出一磁場(圖八中標示為「Induced B」)。因此邊沿成了抵抗轉動的電磁鐵楞次定律一例)。在圖的右邊,經轉動中軸臂返回的電流,通過右邊沿到達底部的電刷。此一返回電流所感應的磁場會抵抗外加的磁場,它有減少通過電路那邊通量的傾向,以此增加旋轉帶來的通量。因此在圖的左邊,經轉動中軸臂返回的電流,通過左邊沿到達底部的電刷。感應磁場會增加電路這邊的通量,減少旋轉帶來的通量。所以,電路兩邊都生成出抵抗轉動的電動勢。儘管有反作用力,需要保持碟片轉動的能量,正等於所產生的電能(加上由於摩擦焦耳熱及其他消耗所浪費的能量)。所有把機械能轉化成電能的發電機都會有這種特性。

雖然法拉第定律經常描述發電機的運作原理,但是運作的機理可以隨個案而變。當磁鐵繞着靜止的導電體旋轉時,變化中的磁場生成電場,就像麥克斯韋-法拉第方程式描述的那樣,而電場就會通過電線推着電荷行進。這個案叫感應電動勢。另一方面,當磁鐵靜止,而導電體運動時,運動中的電荷的受到一股磁力(像洛倫茲力定律所描述的那樣),而這磁力會通過電線推着電荷行進。這個案叫動生電動勢。(更多有關感應電動勢、動生電動勢、法拉第定律及洛倫茲力的細節,可見上例或格里夫斯一書。[13]

摩打

發電機可以「反過來」運作,成為摩打。例如,用法拉第碟片這例子,設一直流電流由電壓驅動,通過導電軸臂。然後由洛倫茲力定律可知,行進中的電荷受到磁場B的力,而這股力會按佛來明左手定則訂下的方向來轉動碟片。在沒有不可逆效應(如摩擦或焦耳熱)的情況下,碟片的轉動速率必需使得B/dt等於驅動電流的電壓。

變壓器

法拉第定律所預測的電動勢,同時也是變壓器的運作原理。當線圈中的電流轉變時,轉變中的電流生成一轉變中的磁場。在磁場作用範圍中的第二條電線,會感受到磁場的轉變,於是自身的耦合磁通量也會轉變(dΦB/dt)。因此,第二個線圈內會有電動勢,這電動勢被稱為感應電動勢變壓器電動勢。如果線圈的兩端是連接着一個電負載的話,電流就會流動。

電磁流量計

法拉第定律可被用於量度導電液體或漿狀物的流動。這樣一個儀器被稱為電磁流量計。在磁場B中因導電液以速率為v的速度移動,所生成的感應電壓ε可由以下公式求出:

其中ℓ為電磁流量計中電極間的距離。

另見

註解

資料來源

延伸閱讀

外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.