Loading AI tools
来自维基百科,自由的百科全书
泵,或稱唧筒,又作幫浦,是一種移動流體(有時也包括泥漿)的裝置,可能透過加壓,也可能透過其他的方式。泵運(Pumping)又稱泵送、抽運,是指泵的運作,可將液體或分子從一個位置移動到另一個位置。泵一般是將電能轉換為液壓能或是氣壓能。
泵有許多不同的應用,例如水井泵、水族箱過濾、池塘過濾以及水曝氣,汽車產業中用在水冷系統以及燃料噴射裝置,能源產業用在油井泵、天然氣井,或是暖通空調系統中運作冷卻塔以及其他元件。在醫療衛生產業中,在藥品的開發和製造時會用到泵,泵也可作為人工臟器,例如人工心臟以及人工陰莖,
有些泵裏有二個或多個泵的機構,流體會依序經過這些機構,這類的泵稱為多級泵(multi-stage pump)。
人類及動物的心臟可說是天然的泵,它把血液輸送到身體各個部分。生物體內也有許多不同種類的泵(包括化學泵)。有時也會用仿生學來發展新型的泵。
最早的泵是在大約於公元前300年左右出現的,阿基米德發明了一種泵,稱為阿基米德式螺旋抽水機,至今仍有廠家在生產。
希臘人克特西比烏斯(Ctesibius)(公元前285-222年)發明的壓力泵是一種最原始的活塞泵。主要用來生產水柱以及從井口舉起水。(至今還保存在古羅馬時代的遺址上,如在英國的西爾切斯特(Silchester))。
中國歷史上南北朝時期出現的方板鏈泵作為一種鏈泵(Chain pump)是泵類機械的一項重要發明。
有些泵是沈沒在要抽取的流體中的,有些則是置放在流體之外運作。
泵可以依其運作方式分為電磁泵、正排量泵、impulse pump、動力泵、重力泵、蒸氣泵和無閥式泵。泵主要可以分成三種:正排量泵、離心泵和軸流泵。離心泵的流體流動方向在進入葉輪後會有90度的旋轉,而軸流泵的流體在進入葉輪後方向不會改變[1][2]。
電磁泵是利用電磁學移動液態金屬、熔鹽、鹽水或是其他導電液體的設備。
電磁泵會將磁場施加在和液體行進方向垂直的方向,並且讓電流流過流體,因此產生電磁力使液體移動。
正排量泵(positive-displacement pump)會限制一定量的流體,並施力使流體前進的泵。
有些正排量泵在入口側有漸漸擴張的空穴,在出口側則有漸漸收縮的空穴。流體在入口處空穴漸漸擴張時進入泵內,在出口空穴漸漸收縮時離開泵,在每一個運作循環之間,其容積均為定值。
Impulse pump是用氣體(多半是空氣)產生的壓力。有些脈衝泵會讓液體 (多半是水)中注入氣體,並讓氣體釋放,累積在泵的某處,產生壓力並使部份的液體往上移動。
Impulse pump包括:
Impulse pump除了用氣體循環累積和釋放的方式進行外,也可以用燃燒碳氫化合物來產生壓力。這類燃燒驅動的泵在燃燒時會透過致動膜傳遞衝量到流體。為了可以直接傳遞,泵的大部份材質都要由彈性體(例如矽橡膠)組成。因此燃燒讓薄膜膨脹,讓流體擠壓到旁邊的泵腔室內。第一個燃燒驅勳泵是由ETH Zurich所開發[3]。
轉子動力泵(或動力泵)是用增加流速來增加流體動能的泵。在流體離開泵時,流速變慢,增加的能量就會轉換為壓力。動能和壓力的轉換可以用熱力學第一定律或伯努利定律來解釋。
動力泵可以用提昇速度的方式再作細分[4]。
這類的泵有一些特點:
動力泵和正排量泵有個差異,在於在閥關閉的條件下如何運作。正排量泵會讓流體移動,因此關閉出口的閥會讓壓力持續增加,會破壞泵或管線。動力泵在出口閥關閉的情形下,短時間下可以安全運作。
重力泵包括虹吸和海倫噴泉。液壓錘有時也視為是重力泵。其中的流體是被重力所提昇。
蒸氣泵包括所有由蒸汽機驅動的泵,也包括托馬斯·塞維利的無活塞泵以及蒸汽雙缸泵,近來對蒸氣泵的研究多半是和歷史有關。
近來在發展中國家的小農對於小功率的太陽能蒸氣泵又有了興趣。蒸汽機越小,效率越低,因此使用小型蒸汽機的方案不可行。不過使用現代的工程材料配合其他的發動機組態,這類系統在性價比上有優勢。
無閥式泵的原理在許多生醫或是工程系統中都有使用。無閥泵的系統中,不是用閥門或是實體的阻礙來調節流體的運動。而無閥式泵的效率不一定低於有閥的泵。事實上,許多自然或是工程用的流體動力系統或多或少有使用無閥式泵來輸送流體。心血管系統的血液流動即為一例,即使心瓣膜失效,血液系統仍可進行一定程度的循。而且脊椎動物胚胎的心臟,早在可辨識的心室和瓣膜發育之前就開始泵血。和單方向的血液流動類似,鳥類呼吸系統在固定的肺臟內將空氣注入體內,生理上也沒有類似閥的組織。在微流控中,製作了無閥的阻抗泵,且預期這類閥特別適合輸送敏感的生物流體。利用壓電效應的噴墨打印機也是用無閥式泵。噴墨時泵腔室因為該方向的流體阻抗小而將墨清空,之後再透過毛細現象填充。
泵的規格會用馬力、體積流率、輸出壓強(以揚程高度表示)、輸入吸力(以揚程高度表示)。
揚程高度可以表示在大氣壓力下,泵可以提昇水柱的高度。
從初始設計的觀點來看,工程師會用名為比速率(specific speed)的量,來識別針對某流量及以揚程下,某一種泵是否適合。NPSH(Net Positive Suction Head)是有關泵性能很重要的參數,其中包括二個概念:
為了理想的泵運作,需讓NPSHa始終大於NPSHr。這可以確保泵運作時,不會出現可能會造成破壞的空蝕現象(cavitation)。
泵注入流體內的功率會增加流體的能量。因此其功率關係是泵機制的力學能以及泵內流體元素力學能之間的平衡。這是由一系列聯立微分方程所統御,此聯立微分方程即為納維-斯托克斯方程。不過在泵內也可以使用較簡化的伯努利定律來描述。因此泵需要的功率P為:
其中Δp是入口和出口之間總壓的變化(單位是Pa),Q是流體的體積流率,單位是m3/s。 總壓有重力位能、靜壓和動能的元素。也就是說,能量透過流體引力勢能的變化、速度的變化以及靜壓的變化來分配。η是泵的效率,可以從製造商的資訊中得到(例如泵曲線),一般可以由流體動力學模擬(根據泵的幾何求解納維-斯托克斯方程),也可以用測試求得。泵的效率和泵的組態以及運作條件(像轉速、流體密度以及黏度等)有關
針對典型的泵組態,會對流體作功,因此功是正值。若是流體對泵作用的應用(渦輪發動機),其功為負值。要驅動泵的功率等於輸出功率除以效率。
泵的效率定義為給流體的功率除以驅動泵的功率。即使泵固定,效率也不是定值,是輸出流量和揚程冟函數。離心泵的效率隨着流量增加,一直到運作範圍的一半為止(峰值效率或是最佳效率點),之後效率就隨流量減少。這類的泵性能資料會由泵廠商提供,以便客戶選擇泵。泵的效率會隨着時間磨損,而下降(葉輪變小,因此間隙增加)。
若系統中有離心泵時,在設計上需符合泵的「揚程損失-流量特性」,讓泵在接近其最佳效率點運作。
泵效率是重要的指標,需要定期測試。熱力泵測試是其中一種的測試方式。上標
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.