截角超立方體有24個:8個截角立方體,和16個正四面體

Quick Facts 截角超立方體, 類型 ...
截角超立方體
Thumb
施萊格爾投影
(可以看見正四面體胞)
類型均勻多胞體
識別
名稱截角超立方體
參考索引12 13 14
數學表示法
考克斯特符號
英語Coxeter-Dynkin diagram
node_1 4 node_1 3 node 3 node 
施萊夫利符號t0,1{4,3,3}
性質
24
8 3.8.8
16 3.3.3
88
64 {3}
24 {8}
128
頂點64
組成與佈局
頂點圖Thumb
Isosceles triangular pyramid
對稱性
考克斯特群BC4, [4,3,3], order 384
特性
convex
Close

坐標

截角超立方體可以通過在每條棱距離頂點處截斷超立方體的每一個角來得到。每個截斷的角會產生一個正四面體

一個棱長為2的截角超立方體的每個頂點的笛卡兒坐標系坐標為:

投影

More information 考克斯特平面, B4 ...
正交投影
考克斯特平面 B4 B3 / D4 / A2 B2 / D3
Graph Thumb Thumb Thumb
二面體群 [8] [6] [4]
考克斯特平面 F4 A3
Graph Thumb Thumb
二面體群 [12/3] [4]
Close
Thumb
展開圖
Thumb
三維正交投影

參考文獻

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]頁面存檔備份,存於互聯網檔案館
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • 2. Convex uniform polychora based on the tesseract (8-cell) and hexadecachoron (16-cell) - Models 13, 16, 17, George Olshevsky.
  • Klitzing, Richard. 4D uniform polytopes (polychora). bendwavy.org. o3o3o4o - tat, o3x3x4o - tah, x3x3o4o - thex


外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.