Remove ads
来自维基百科,自由的百科全书
漢米頓圖(中國大陸作哈密頓圖,台灣作漢米頓圖)又稱漢密頓圖,是指存在哈密頓環的無向圖,由哈密頓爵士提出。
下列定義,既適用於無向圖,亦適用於有向圖。
哈密爾頓圖的必要條件: 若G=(V,E) 是一個哈密爾頓圖,則對於V的每一個非空子集S,均有W(G-S) ≤|S|。其中|S|是S中的頂點數,W(G-S)表示圖G擦去屬於S中的頂點後,剩下子圖的連通分支的個數。
對歐拉圖而言,有某個充要條件,可用作簡單判定一幅圖是否歐拉圖(歐拉定理)。然而,對於哈密頓圖,並無相應的結果。
不過,仍有一系列越來越鬆的判別條件,能夠斷定一幅圖必定為哈密頓圖。[1]此類定理,最早見於蓋布瑞·狄拉克1952年的研究,其想法直觀,即只要有「足夠多」邊,就能迫得圖有哈密頓圈。用頂點的度推出存在哈密頓圈的定理之中,目前最優的,是1976年邦迪與赫瓦塔爾的定理。
以上是有關無向圖的部分。對於有向圖,相應的定理舉例有Ghouila–Houiri。
個頂點的簡單圖()中,若每個頂點的度皆至少為,則必為哈密頓圖。
波紹·拉約什證明了幾條有關哈密頓圈的定理。以下具體引用一條1962年的定理[4][5],有關連邊少的頂點:
一幅個頂點的完全圖(),若滿足:
- 對所有滿足的整數,度不大於的頂點個數,嚴格小於;
- 度不大於的頂點個數,小於或等於;
則必為哈密頓圖。
注意為偶時,條件2已包含於條件1,所以只在為奇數時,條件2才需要分開列出。
作為例子,考慮附圖中,具有個頂點的圖。其為哈密頓圖:已經將頂點排列好,使哈密頓圈(以紅色標示)正好是外圈。
尋找哈密頓路徑是一個典型的NP-完全問題。後來人們也證明了,找一條哈密頓路的近似比為常數的近似算法也是NP-完全的。
尋找哈密頓路的確定算法雖然很難有多項式時間的,但是這並不意味着只能進行時間複雜度為暴力搜索。利用狀態壓縮動態規劃[來源請求],可以將時間複雜度降低到,具體算法是建立方程f[i][S][j],表示經過了i個節點,節點都是集合S的,到達節點j時的最短路徑。每次都按照點j所連的節點進行轉移。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.