物理學和工程學中,震盪信號的包絡是一條勾勒出極值的光滑曲線。[1]因此,包絡將恆定振幅的概念推廣為瞬時振幅。下圖展示了在上包絡與下包絡之間振盪的調製正弦曲線。包絡函數可以是時間、空間、角度或任何變量的函數。
在空間x和時間t中產生包絡函數的常見情況是波長和頻率幾乎相同的兩個波的疊加:[2]
其中使用了兩個正弦波相加的三角函數,以及近似值Δλ ≪ λ:
此處調製波長λmod來自下式:[2][3]
調製波長是包絡波長的兩倍,因為餘弦波的每半個波長都控制着正弦波的正負值。同樣,拍頻是包絡波的頻率,是調製波頻率的兩倍,即2Δf。[4]
如果這種波是聲波,耳朵聽到的是與f有關的頻率,振幅隨拍頻的變化而變化。[4]
除2π之外,上述正弦波的參數是:
下標C、E分別指載波和包絡。同樣的振幅F來自相同的ξC、ξE值,在適當相關的x、t選擇下,每個本身都可能返回到相同的值。這種不變性意味着可以在空間中追蹤波形,並找到固定振幅的位置在時間中傳播時的速度;要使載波參數保持不變,條件為:
這表明,要保持恆定振幅,距離Δx與時間間隔Δt的關係是相速度 vp
另一方面,同樣的考慮表明包絡線是群速度 vg:[5]
引入波向量k,可得更常見的群速度表達式:
注意到,對於微小變化Δλ而言,相應的波向量小變化Δk為:
於是群速度可重寫為:
其中ω是以弧度/秒為單位的頻率:ω = 2πf。在所有介質中,頻率和波向量都與色散關係ω = ω(k)有關,群速度可以寫成:
在經典真空等介質中,電磁波的色散關係為:
其中c0是經典真空中的光速。這種情況下,相速度和群速度都是c0。
在所謂色散介質中,色散關係可能是波向量的複雜函數,相速度和群速度也不盡相同。例如,對於GaAs中原子振動(聲子)表現出的幾種波,不同波向量k方向的色散關係如圖所示。一般而言,相速度和群速度的方向可能不同。[7]
凝聚態物理學中,晶體中移動電荷載流子的能量本徵函數可表為布洛赫波:
其中n是帶的編號(如導帶或價帶),r是空間位置,k是波矢。指數是正弦變化函數,對應一個緩慢變化的包絡,調製波函數un, k的快速變化部分,描述波函數在晶格原子核心附近的行為。包絡只限於晶體布里淵區限定範圍內的k值,這就限制了它隨位置r變化的速度。
用量子力學確定載流子行為時,通常使用包絡近似法。其中薛定諤方程被簡化到僅指包絡的行為,邊界條件直接應用於包絡函數,而非完整的波函數。[9]例如,被困在雜質附近的載流子波函數受包絡函數F支配,函數是布洛赫函數的疊加:
其中包括F(k)的傅立葉分量由近似薛定諤方程求得。[10]在某些應用中,周期部分uk被帶緣附近的值取代,如k=k0,接着:[9]
多縫繞射圖樣的包絡由單縫繞射圖樣決定,後者的包絡線如下:[11]
其中α是繞射角,d是狹縫寬度,λ是波長。對多個狹縫,圖樣為[11]
其中q為狹縫數量,g是光柵常數。第一個因子即單縫結果I1,調製着第二個變化更快的因子,取決於狹縫數量與間距。
包絡檢波器是從信號中提取包絡的電子電路。
在數碼訊號處理中,可用希爾伯特變換或滑動平均RMS振幅估計包絡。[12]