體積模數 ( K {\displaystyle K} )也稱為不可壓縮量,是材料對於表面四周壓強產生形變程度的度量。它被定義為產生單位相對體積收縮所需的壓強。它在SI單位制中的基本單位是帕斯卡。 壓縮示意圖 定義 體積模數可由下式定義: K = − V ∂ p ∂ V {\displaystyle K=-V{\frac {\partial p}{\partial V}}} 其中 p {\displaystyle p} 為壓強, V {\displaystyle V} 為體積, ∂ p ∂ V {\displaystyle {\frac {\partial p}{\partial V}}} 是壓強對體積的偏導數。體積模數的倒數即為一種物質的壓縮率。 還有其他一些描述材料對應變的反應的物理量。譬如剪切模數描述了材料對剪切應變的反應;而楊氏模數則描述了材料對線性應變的反應。對流體而言,只有體積模數具有意義。而對於不具有各向同性的固體材料(如紙、木等),上述三種彈性模數則不足以描述這些材料對應變的反應。 熱力學關係 嚴格的說,體積模數是一個熱力學量。說明在何種溫度變化條件下對體積模數是有必要的。等溫體積模數( K T {\displaystyle K_{T}} )以及定熵(絕熱)體積模數( K S {\displaystyle K_{S}} )或其他形式都是可能出現的。實踐中上述區分只是用於對氣體的討論中。 對於理想氣體,絕熱體積模數 K S {\displaystyle K_{S}} 為: K S = γ p {\displaystyle K_{S}=\gamma \,p} 而等溫體積模數 K T {\displaystyle K_{T}} 為: K T = p {\displaystyle K_{T}=p\,} 其中 γ {\displaystyle \gamma } 為絕熱指數; p {\displaystyle p} 為壓強。 對於流體,體積模數和密度決定了在該種材料中的音速。此種關係由下式說明: c = K ρ . {\displaystyle c={\sqrt {\frac {K}{\rho }}}.} 固體可以傳遞橫波,故要決定固體中的聲速還需要其他的彈性模數,如剪切模數。 部分材料的體積模數 More information 材料, 體積模數(Pa) ... 部分材料的體積模數 材料 體積模數(Pa) 玻璃 7010370000000000000♠3.7×1010[1] 鋼 7011160000000000000♠16×1010[1] 水銀 7010250000000000000♠2.5×1010[1] 乙醇 7008900000000000000♠0.09×1010[1] 金剛石 7011442000000000000♠442×109[2] 水 7009220000000000000♠2.2×109[3] 空氣 7005142000000000000♠1.42×105 絕熱體積模數 空氣 7005101000000000000♠1.01×105 等溫體積模數 固態氦 7007500000000000000♠5×107 (估計值)[4] Close 參考文獻 [1]鍾錫華、周岳明. 《力学》. 北京大學出版社. 2000年12月: 204. ISBN 978-7-301-04591-6. [2]Phys. Rev. B 32, 7988 - 7991 (1985), Calculation of bulk moduli of diamond and zinc-blende solids [3]存档副本. [2010-07-28]. (原始內容存檔於2012-08-30). [4]http://www3.interscience.wiley.com/cgi-bin/abstract/105558571/ABSTRACT[永久失效連結] More information , ... 換算公式 均質各向同性線彈性材料具有獨特的彈性性質,因此知道彈性模數中的任意兩種,就可由下列換算公式求出其他所有的彈性模數。 ( λ , G ) {\displaystyle (\lambda ,\,G)} ( E , G ) {\displaystyle (E,\,G)} ( K , λ ) {\displaystyle (K,\,\lambda )} ( K , G ) {\displaystyle (K,\,G)} ( λ , ν ) {\displaystyle (\lambda ,\,\nu )} ( G , ν ) {\displaystyle (G,\,\nu )} ( E , ν ) {\displaystyle (E,\,\nu )} ( K , ν ) {\displaystyle (K,\,\nu )} ( K , E ) {\displaystyle (K,\,E)} ( M , G ) {\displaystyle (M,\,G)} K = {\displaystyle K=\,} λ + 2 G 3 {\displaystyle \lambda +{\tfrac {2G}{3}}} E G 3 ( 3 G − E ) {\displaystyle {\tfrac {EG}{3(3G-E)}}} λ ( 1 + ν ) 3 ν {\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}} 2 G ( 1 + ν ) 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}} E 3 ( 1 − 2 ν ) {\displaystyle {\tfrac {E}{3(1-2\nu )}}} M − 4 G 3 {\displaystyle M-{\tfrac {4G}{3}}} E = {\displaystyle E=\,} G ( 3 λ + 2 G ) λ + G {\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}} 9 K ( K − λ ) 3 K − λ {\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}} 9 K G 3 K + G {\displaystyle {\tfrac {9KG}{3K+G}}} λ ( 1 + ν ) ( 1 − 2 ν ) ν {\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}} 2 G ( 1 + ν ) {\displaystyle 2G(1+\nu )\,} 3 K ( 1 − 2 ν ) {\displaystyle 3K(1-2\nu )\,} G ( 3 M − 4 G ) M − G {\displaystyle {\tfrac {G(3M-4G)}{M-G}}} λ = {\displaystyle \lambda =\,} G ( E − 2 G ) 3 G − E {\displaystyle {\tfrac {G(E-2G)}{3G-E}}} K − 2 G 3 {\displaystyle K-{\tfrac {2G}{3}}} 2 G ν 1 − 2 ν {\displaystyle {\tfrac {2G\nu }{1-2\nu }}} E ν ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}} 3 K ν 1 + ν {\displaystyle {\tfrac {3K\nu }{1+\nu }}} 3 K ( 3 K − E ) 9 K − E {\displaystyle {\tfrac {3K(3K-E)}{9K-E}}} M − 2 G {\displaystyle M-2G\,} G = {\displaystyle G=\,} 3 ( K − λ ) 2 {\displaystyle {\tfrac {3(K-\lambda )}{2}}} λ ( 1 − 2 ν ) 2 ν {\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}} E 2 ( 1 + ν ) {\displaystyle {\tfrac {E}{2(1+\nu )}}} 3 K ( 1 − 2 ν ) 2 ( 1 + ν ) {\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}} 3 K E 9 K − E {\displaystyle {\tfrac {3KE}{9K-E}}} ν = {\displaystyle \nu =\,} λ 2 ( λ + G ) {\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}} E 2 G − 1 {\displaystyle {\tfrac {E}{2G}}-1} λ 3 K − λ {\displaystyle {\tfrac {\lambda }{3K-\lambda }}} 3 K − 2 G 2 ( 3 K + G ) {\displaystyle {\tfrac {3K-2G}{2(3K+G)}}} 3 K − E 6 K {\displaystyle {\tfrac {3K-E}{6K}}} M − 2 G 2 M − 2 G {\displaystyle {\tfrac {M-2G}{2M-2G}}} M = {\displaystyle M=\,} λ + 2 G {\displaystyle \lambda +2G\,} G ( 4 G − E ) 3 G − E {\displaystyle {\tfrac {G(4G-E)}{3G-E}}} 3 K − 2 λ {\displaystyle 3K-2\lambda \,} K + 4 G 3 {\displaystyle K+{\tfrac {4G}{3}}} λ ( 1 − ν ) ν {\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}} 2 G ( 1 − ν ) 1 − 2 ν {\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}} E ( 1 − ν ) ( 1 + ν ) ( 1 − 2 ν ) {\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}} 3 K ( 1 − ν ) 1 + ν {\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}} 3 K ( 3 K + E ) 9 K − E {\displaystyle {\tfrac {3K(3K+E)}{9K-E}}} CloseWikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.