在數學和數理邏輯中,邏輯代數(有時也稱開關代數、布爾代數)是代數的一個分支,其變量的值僅為真和假兩種真值(通常記作 1 和 0)。初等代數中變量的值是數字,而且主要的運算是加法、乘法和乘方(以及它們的逆運算),而邏輯代數的主要運算符有合取與,記為∧;析取或,記為∨;否定非,記為¬。因此,它是描述邏輯運算的一種形式主義,就像初等代數描述數字運算一樣。
邏輯代數是喬治·布爾(George Boole)在他的第一部著作《邏輯的數學分析》(1847年)中引入,並在他的《思想規律的研究》(1854年)中全面闡述了邏輯代數。[1] 根據Huntington的說法,「布爾代數」術語最初是由Sheffer於1913年提出。[2]
邏輯代數中的幾個概念
參與邏輯運算的變量叫邏輯變量,用字母A,B……表示。每個變量的取值非0 即1。 0、1不表示數的大小,而是代表兩種不同的邏輯狀態。
正、負邏輯規定:
- 正邏輯體制規定:高電平為邏輯1,低電平為邏輯0。
- 負邏輯體制規定:低電平為邏輯1,高電平為邏輯0。
邏輯函數:如果有若干個邏輯變量(如A、B、C、D)按與、或、非三種基本運算組合在一起,得到一個表達式L。對邏輯變量的任意一組取值(如0000、0001、0010)L有唯一的值與之對應,則稱L為邏輯函數。邏輯變量A、B、C、D的邏輯函數記為:L=f(A、B、C、D)
邏輯運算
邏輯代數的基本運算如下。
- 與(合取),記作 x∧y(有時記作 x AND y 或 Kxy),在 x = y = 1 情況下,滿足 x∧y = 1;其他情況下 x∧y = 0。
- 或(析取), 記作 x∨y(有時記作 x OR y 或 Axy),在 x = y = 0 情況下,滿足 x∨y = 0;其他情況下 x∨y = 1。
- 非 (否定), 記作 ¬x(有時記作 NOT x, Nx 或 !x),在 x = 1 情況下,滿足 ¬x = 0;而在 ¬x = 1 情況下,x = 0。
如果把真值0和1解釋為整數,這些運算可以表示為普通算數運算:
此外可以用製作真值表來表示 x∧y, x∨y 和 ¬x 的值:
|
|
有人可能會認為,只有否定和另外兩種運算之一是基本的,因為用下列性質可以用邏輯否和邏輯或來定義邏輯與,反之亦然:
上述三個邏輯運算被稱為基本的,這意味着其他邏輯運算可以以它們為基礎,由他們的複合來建立,即將這些運算組合或結合。下面是由基本運算構成的運算的例子:
這些定義產生以下真值表,其中給出了對所有四個可能的輸入,這些運算的值。
0 | 0 | 1 | 0 | 1 |
---|---|---|---|---|
1 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 |
第一種運算,x → y 或 Cxy,叫做實質蘊涵。如果 x 為真,則 x → y 的值就取自 y 的值。但如果 x 為假,則 y 可以忽略;然而此運算必須返回某種真值,而且只有兩種選擇,所以返回蘊含較小的值,即真。(相干邏輯通過看作非真非假的假前提的蘊含來處理這件事。)
第二種運算,x ⊕ y 或 Jxy,叫做異或(通常縮寫為XOR)與邏輯或的區別在於邏輯或包含其類型。它排除了 x 和 y 同時為真的情形。用算術來定義就是加和之後 mod 2,就如 1 + 1 = 0.
第三種運算,異或的互補運算,是同或或邏輯等價:x ≡ y 或 Exy,當 x 與 y 值相同時為真。因此作為其互補運算,x ⊕ y 可以理解為 x ≠ y,當 x 和 y 不同時為真。它對應的 mod 2 算術為 x + y + 1。
給定兩個操作數,每個具有兩個可能的值,共有 22 = 4 種可能的輸入組合。由於每種輸出有兩種可能值,一共有 24 = 16種可能的二元邏輯運算。
運算律
兩個主要的二元運算的符號定義為 (邏輯與)和 (邏輯或),把單一的一元運算的符號定義為 (邏輯非)。我們還使用值 0 (邏輯假)和 1 (邏輯真)。邏輯代數有下列性質:
邏輯代數的基本規則
任何一個含有變量 X 的等式,如果將所有出現 X 的位置,都代之以一個邏輯函數 F,此等式仍然成立。
設 F 是一個邏輯函數式,如果將 F 中的所有的 * 變成 +,+ 變成 *,0 變成 1,1 變成 0,而變量保持不變。那麼就的得到了一個邏輯函數式 F',這個 F' 就稱為 F 的對偶式。如果兩個邏輯函數 F 和 G 相等,則它們各自的對偶式 F' 和 G' 也相等。
當已知一個邏輯函數 F,要求 ¬F 時,只要把 F 中的所有 * 變成 +,+ 變成 *,0 變成 1,1 變成 0,原變量變成反變量,反變量變成原變量,即得 ¬F。 使用反演規則時要注意保持原函數中邏輯運算的優先順序。
邏輯函數的標準形式
邏輯變量的邏輯與運算叫做與項,與項的邏輯或運算構成了邏輯函數的與或式,也叫做積之和式(SP form)。
邏輯變量的邏輯或運算叫做或項,或項的邏輯與運算構成了邏輯函數的或與式,也叫做和之積式(PS form)。
對於 n 個變量的邏輯函數而言,它的與項如果包含全部 n 個變量,即每個變量以原變量或反變量的形式出現一次且只出現一次,那麼這個與項就稱為該邏輯函數的最小項。
對於 n 個變量的邏輯函數而言,它的或項如果包含 全部n 個變量,即每個變量以原變量或反變量的形式出現一次且只出現一次,那麼這個或項就稱為該邏輯函數的最大項。
邏輯函數的化簡
運用邏輯代數的基本公式及規則可以對邏輯函數進行變換,從而得到表達式的最簡形式。這裏所謂的最簡形式是指最簡與或式或者是最簡或與式,它們的判別標準有兩條:(1)項數最少;(2)在項數最少的條件下,項內的文字最少。
卡諾圖是遵循一定規律構成的。由於這些規律,使邏輯代數的許多特性在圖形上得到形象而直觀的體現,從而使它成為公式證明、函數化簡的有力工具。
應用
20世紀早期,一些電子工程師領悟到邏輯代數很像某種電子電路的行為。香農在它1937年的論文中證明了這種行為與邏輯代數等價。
幾乎所有現代通用計算機都用二值布爾邏輯做運算;也就是說它們的電路是二值布爾邏輯的物理表示。幾種表示方式:導線上電壓的高低,磁性存儲設備中磁疇的方向,打孔卡或紙帶上的洞,等等(但有些早期的計算機用了十進制電路或者機械,而不是二值邏輯電路)
當然,也可能在任意介質中編碼進2個以上的符號。比如在導線上用0,1,2,3伏特去編碼一種有4個符號的字符集,或者利用打孔卡的洞的不同大小。但實踐上,在一個很小的、高速的、低功耗的電路中噪聲是個關鍵因素。它使分辨多個可能出現的符號變得困難。所以電路設計者們選擇了高、低2種電壓而不是4種。
由於上面的原因計算機使用二值邏輯電路。最常見的計算機架構使用32或64個叫做比特的布爾值序列,比如011010001101001010101001010111100000010101001011。當使用機器語言、匯編語言和某些高級語言時,程式設計師可以操作寄存器的數字結構。在寄存器中0電壓表示邏輯0,參考電壓(通常是+5伏或+3.3伏[4])表示邏輯1。這些語言同時支持數值操作和邏輯操作。這裏的「數值操作」指計算機把比特序列當作二進制數字進行加減乘除等運算。「邏輯操作」指2個比特序列之間的與或非運算,序列中每一位都與另一序列中對應位進行運算。這兩種操作之間的關鍵不同是前者有進位而後者沒有。
參見
- 數字邏輯(數位邏輯)
- 邏輯函數(交換函數)
- 規範形式 (布爾代數)
- 邏輯門
- 卡諾圖
參考文獻
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.