同倫(英語:Homotopic[註 1])在數學和拓撲學上描述了兩個對象間的「連續變化」。兩個定義在拓撲空間之間的連續函數,如果其中一個能「連續地形變」為另一個,則這兩個函數稱為同倫的。這樣的形變稱為兩個函數之間的同倫。同倫的一個重要的應用是同倫群餘倫群英語Cohomotopy group的定義,它們是代數拓撲中重要的不變量英語Invariant (mathematics)

圖中的兩條虛線相對於它們的端點是同倫的。動畫表示了一種可能的同倫。

事實上,在特定的空間中應用同倫還有一些技術上的困難。代數拓撲學家一般使用緊生成空間CW複形英語Spectrum_(topology)

定義

Thumb
兩個將環面映射到R3嵌入之間的同倫:「咖啡杯的表面」與「甜甜圈的表面」。這也是一個同痕的例子。

給定兩個拓撲空間 。考慮兩個連續函數 ,若存在一個定義在空間 X單位區間 [0,1] 的積空間上的連續映射 使得:

則稱之間的一個同倫[1]:183

如果我們將 H 的第二個參數當作時間,這樣 H 相當於描述了一個從 fg連續形變:0 時刻我們得到函數f,1 時刻我們得到函數 g。 我們也可以將第二個參數視作一個可以滑動的「控制條」,當控制條從0滑動至1時,函數 f 平滑地轉變為函數 g,反之亦然。

另一種觀點是:對每個,函數 定義一條連接 的路徑:

右側的循環動畫展示了兩個嵌入R3中的環面之間的同倫。X 是環面,YR3f,g 是從環面到 R3的連續函數,當動畫開始時,f 把環面映射為嵌入的甜甜圈的表面。g 把環面映射為嵌入的咖啡杯表面。動畫展示了ht(x)作為時間的函數時的圖像。每一次循環中,時間 t 從 0 變成 1,暫停一會,又從 1 變成 0。

性質

當且僅當存在同倫 Hf 轉換為 g時,稱連續函數 fg 是同倫的。同倫是 XY 上所有的連續函數之間的一種等價關係[1]:184。以下情形中,同倫關係滿足函數的複合

如果 f1, g1 : XY 是同倫的,並且 f2, g2 : YZ 是同倫的,則他們的複合 f2f1g2g1 : XZ 也是同倫的。

例子

例一:取 , , 。則 透過下述函數在 中同倫。

(注意到此例子不依賴於變數 ,通常並非如此。)
:「在中同倫」的說法提示一個重點:在例一中若將代為子空間,則雖然仍取值在,但此時它們並不同倫。此點可藉中間值定理驗證。


例二:取,,。則描繪一個以原點為圓心的單位圓; 停在原點。 透過下述連續函數同倫:

幾何上來看,對每個值,函數描繪一個以原點為圓心,半徑 的圓。

相對同倫

為定義高階基本群,必須考慮相對於一個子空間的同倫概念。這是指能在不變動該子空間的狀況下連續變化,正式定義是:設是連續函數,固定子空間 ;若存在前述同倫映射 ,滿足:

則稱 相對於 同倫。若取 ,則回到原先的同倫定義。

空間的同倫等價

給定兩個拓撲空間,我們稱之同倫等價(或稱具相同倫型),當且僅當存在兩個連續映射,使得:

  • 同倫到 的恆等映射
  • 同倫到 的恆等映射

同胚蘊含同倫,反之則不然,詳見以下例子:

例三

  • 一個平面上的圓或橢圓同倫等價到,即去掉一點的平面。
  • 線段、閉圓盤及閉球間兩兩同倫等價,它們皆同倫等價於一個點。

同倫等價是個拓撲空間之間的等價關係。許多代數拓撲學裏的性質均在同倫等價下不變,包括有:單連通同調群上同調群等等。

同痕

同痕(Isotopy)是同倫的加細版;我們進一步要求所論的函數嵌入,並要求兩者間可用一族嵌入映射相連。

定義如此:被稱為同痕的,當且僅當存在連續映射使之滿足:

  • 對所有,映射是個嵌入映射。

同痕的概念在紐結理論中格外重要:若兩個結同痕,則我們視之相等;換言之,可以在不使結扯斷或相交的條件下彼此連續地變形。

註釋

參考

參見

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.