在理論物理中,重整化群(renormalization group,簡稱RG)是一個在不同長度標度下考察物理系統變化的數學工具。
標度上的變化稱為「標度變換」。重整化群與「標度不變性」和「共形不變性」的關係較為緊密。共形不變性包含了標度變換,它們都與自相似有關。在重整化理論中,系統在某一個標度上自相似於一個更小的標度,但描述它們組成的參量值不相同。系統的組成可以是原子,基本粒子,自旋等。系統的變量是以系統組成之間的相互作用來描述。
基本想法就是耦合常數依賴長度縮放或能量標度,重整化群幫助陳述耦合數量和能量標度的關係。默里·蓋爾曼和Francis E. Low於1954年提出了下面量子電動力學的重整化群方程:[1]
g(μ) = G−1( (μ/M)d G(g(M)) ) ,
g(κ) = G−1( (κ/μ)d G(g(μ)) ) = G−1( (κ/M)d G(g(M)) )
費恩曼、朱利安·施溫格、朝永振一郎在1965年贏了物理學的諾貝爾獎,因為他們都把重整化以及正規化等想法應用於量子電動力學。[2][3][4]
利奧·卡達諾夫在1966年推出塊自旋的概念來解釋重整化。[5]
然後肯尼斯·威爾森使用重整化群解決近藤問題,[6] 以及描述臨界現象和第二相變。[7][8][9] 他1982年贏了諾貝爾獎。[10]
參見Phi fourth theory(四次交互論; 論)。歐幾里得空間的拉氏量是
配分函數或泛函積分是:
通過重正化以及正規化 :
若 :
所以
介紹 :
所以新的拉氏量是以及
不同於,因為 改變了。 上面的 Z 陳述一個effective field theory。若 .
假設
所以
耦合常數的變量為 。耦合常數的演進是動力系統的臨界點:
米切爾·費根鮑姆使用重整化群計算費根鮑姆常數,而且將重整化應用於分岔理論。[11]
阿圖爾·阿維拉(巴西數學家)也將重整化群應用於動力系統、費根鮑姆常數等[12][13]
其他應用包括:
等
- S. R. White (1992): Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863. 有人說這是最成功的variational RG辦法
- N. Goldenfeld (1993): Lectures on phase transitions and the renormalization group. Addison-Wesley.
- D. V. Shirkov (1999): Evolution of the Bogoliubov Renormalization Group. arXiv.org:hep-th/9909024 (頁面存檔備份,存於互聯網檔案館). A mathematical introduction and historical overview with a stress on group theory and the application in high-energy physics.
- B. Delamotte (2004): A hint of renormalization. American Journal of Physics, Vol. 72, No. 2, pp. 170\u2013184, February 2004 (頁面存檔備份,存於互聯網檔案館). A pedestrian introduction to renormalization and the renormalization group. For nonsubscribers see arXiv.org:hep-th/0212049 (頁面存檔備份,存於互聯網檔案館)
- H.J. Maris, L.P. Kadanoff (1978): Teaching the renormalization group. American Journal of Physics, June 1978, Volume 46, Issue 6, pp. 652-657 (頁面存檔備份,存於互聯網檔案館). A pedestrian introduction to the renormalization group as applied in condensed matter physics.
- K. Huang 黃克孫 (2013): A Critical History of Renormalization. arXiv:1310.5533 (頁面存檔備份,存於互聯網檔案館)
- Shirkov, D. V. Fifty years of the renormalization group. CERN Courier. 2001-08-31 [2008-11-12]. (原始內容存檔於2008-12-03).
- T. D. Lee 李政道; Particle physics and introduction to field theory, Harwood academic publishers, 1981, [ISBN 3-7186-0033-1]. 是總結
- L. Ts. Adzhemyan, N.V.Antonov and A. N. Vasiliev; The Field Theoretic Renormalization Group in Fully Developed Turbulence; Gordon and Breach, 1999. [ISBN 90-5699-145-0].
- Vasil'ev, A. N.; The field theoretic renormalization group in critical behavior theory and stochastic dynamics; Chapman & Hall/CRC, 2004. [ISBN 9780415310024] (Self-contained treatment of renormalization group applications with complete computations);
- Zinn-Justin, Jean; Quantum field theory and critical phenomena, Oxford, Clarendon Press (2002), ISBN 0-19-850923-5 (a very thorough presentation of both topics);
- The same author: Renormalization and renormalization group: From the discovery of UV divergences to the concept of effective field theories, in: de Witt-Morette C., Zuber J.-B. (eds), Proceedings of the NATO ASI on Quantum Field Theory: Perspective and Prospective, June 15–26, 1998, Les Houches, France, Kluwer Academic Publishers, NATO ASI Series C 530, 375-388 (1999) [ISBN ]. Full text available in PostScript (頁面存檔備份,存於互聯網檔案館).
- Kleinert, H. and Schulte Frohlinde, V; Critical Properties of φ4-Theories, World Scientific (Singapore, 2001); Paperback ISBN 981-02-4658-7. Full text available in PDF (頁面存檔備份,存於互聯網檔案館).