超冷原子是將原子保持在一個極低溫的狀態(接近絕對零度,0K),一般來說其典型溫度在百納開左右。在這樣的低溫狀態下,原子的量子力學性質變得十分重要。要到達如此低的溫度,則需要好幾種技術的配合使用。首先將原子囚禁於磁光阱中,並用激光冷卻預冷。一般也需要再利用蒸發製冷,以達到更低的溫度。最近,麻省理工學院也有通過激光冷卻直接達到量子簡併物態英語Degenerate matter的研究成果報導[1][2]

當原子被降到足夠低的溫度時,他們將會處於一種新的量子物態。對於玻色型原子氣會產生玻色-愛因斯坦凝聚;對於費米型原子氣,則形成簡併費米氣。由於原子間存在相互作用,實際上絕大多數原子在低溫下的基態是形成固體(除了He3和He4,由於較大的零點能,常壓下始終為液體),因此這類原子氣實際上處於亞穩態。但是當原子氣足夠稀薄,碰撞機率足夠小,這種亞穩態可以比較長時間的存在。無論是費米子還是玻色子,如果原子間相互為吸引作用,上述原子氣所描述的狀態將會失穩而塌縮。對於費米型氣體,某種原子間的吸引作用可能形成類似超導當中的庫伯(Cooper)對,而形成新的基態。

實驗上,冷原子被用於研究玻色-愛因斯坦凝聚(BEC),超流,量子磁性,多體系統,BCS機制,BCS-BEC連續過渡等,對理解量子相變有重要意義。冷原子也被用於研究人工合成規範場,使得人們可以在實驗室中模擬規範場,從而在凝聚體體系中輔助驗證粒子物理的理論(而不需要巨大的加速器)。冷原子可以被精確的操控,可以用於研究量子資訊學,冷原子系統是實現量子計算的眾多方案中非常有前景的之一。[3][4]

參考文獻

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.