故障檢測和隔離(Fault detection and isolation,FDI)是控制工程中的子領域,主要是監控系統,在故障發生時可以識別,並且準確指出故障的種類以及出現位置。有兩種進行故障檢測和隔離的作法:針對感測器故障時訊號的直接的模式識別,或者是根據特定模型推導感測器的理想值,再去分析感測器讀值以及理想值的差異程度。以後者而言,若偏差值超過一定範圍,就會認為有偵測到故障。接下來的故障隔離工作是確認是哪一種的故障,以及故障出現機械的哪個位置。故障檢測和隔離一般會分為兩類:以模型為基礎的故障檢測和隔離,以及以信號處理為基礎的故障檢測和隔離。
Ahmadimanesh, Alireza, and S. Mohammad Shahrtash. "Transient-based fault-location method for multiterminal lines employing S-transform." IEEE transactions on power delivery 28.3 (2013): 1373-1380.
Ahmadimanesh, Alireza, and Seyyed Mohammad Shahrtash. "Time–time-transform-based fault location algorithm for three-terminal transmission lines." IET Generation, Transmission & Distribution 7.5 (2013): 464-473.
Ahmadimanesh, A., and S. M. Shahrtash. "Employing S-transform for fault location in three terminal lines." Environment and Electrical Engineering (EEEIC), 2011 10th International Conference on. IEEE, 2011.
Furse,Cynthia; Smith, Paul; Lo, Chet. "Spread Spectrum Sensors for Critical Fault LocationArchive.is的存檔,存檔日期2010-05-01 on Live Wire Networks" Structural Control and Health Monitoring June 6, 2005.
Chen, Kunjin; Huang, Caowei; He, Jinliang. Fault detection, classification and location for transmission lines and distribution systems: a review on the methods. High Voltage. 1 April 2016, 1 (1): 25–33. doi:10.1049/hve.2016.0005.
Safizadeh, M.S.; Latifi, S.K. Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell. Information Fusion. July 2014, 18: 1–8. doi:10.1016/j.inffus.2013.10.002.
Liu, Ruonan; Yang, Boyuan; Zio, Enrico; Chen, Xuefeng. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing. August 2018, 108: 33–47. doi:10.1016/j.ymssp.2018.02.016.
Genton, Marc G. Classes of Kernels for Machine Learning: A Statistics Perspective. Journal of machine learning research. 2001, 2: 299–312. doi:10.1162/15324430260185646.
Vercellis, Carlo. Business intelligence : data mining and optimization for decision making [Online-Ausg.]. Hoboken, N.J.: Wiley. 2008: 436. ISBN 978-0-470-51138-1.
Hui, Kar Hoou; Ooi, Ching Sheng; Lim, Meng Hee; Leong, Mohd Salman. A hybrid artificial neural network with Dempster-Shafer theory for automated bearing fault diagnosis. Journal of Vibroengineering. 15 November 2016, 18 (7): 4409–4418. doi:10.21595/jve.2016.17024.
Qi, Guanqiu; Zhu, Zhiqin; Erqinhu, Ke; Chen, Yinong; Chai, Yi; Sun, Jian. Fault-diagnosis for reciprocating compressors using big data and machine learning. Simulation Modelling Practice and Theory. January 2018, 80: 104–127. doi:10.1016/j.simpat.2017.10.005.
Wong, Pak Kin; Yang, Zhixin; Vong, Chi Man; Zhong, Jianhua. Real-time fault diagnosis for gas turbine generator systems using extreme learning machine. Neurocomputing. March 2014, 128: 249–257. doi:10.1016/j.neucom.2013.03.059.
Tian, Yang; Fu, Mengyu; Wu, Fang. Steel plates fault diagnosis on the basis of support vector machines. Neurocomputing. March 2015, 151: 296–303. doi:10.1016/j.neucom.2014.09.036.
Lv, Feiya; Wen, Chenglin; Bao, Zejing; Liu, Meiqin. Fault diagnosis based on deep learning. 2016 American Control Conference (ACC). July 2016: 6851–6856. doi:10.1109/ACC.2016.7526751.
Guo, Sheng; Yang, Tao; Gao, Wei; Zhang, Chen. A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network. Sensors. 4 May 2018, 18 (5): 1429. doi:10.3390/s18051429.
Hoang, Duy-Tang; Kang, Hee-Jun. Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cognitive Systems Research. March 2018. doi:10.1016/j.cogsys.2018.03.002.
Lei, Yaguo; Jia, Feng; Lin, Jing; Xing, Saibo; Ding, Steven X. An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data. IEEE Transactions on Industrial Electronics. May 2016, 63 (5): 3137–3147. doi:10.1109/TIE.2016.2519325.
Shao, Haidong; Jiang, Hongkai; Zhang, Xun; Niu, Maogui. Rolling bearing fault diagnosis using an optimization deep belief network. Measurement Science and Technology. 1 November 2015, 26 (11): 115002. doi:10.1088/0957-0233/26/11/115002.
Jia, Feng; Lei, Yaguo; Lin, Jing; Zhou, Xin; Lu, Na. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal Processing. May 2016, 72–73: 303–315. doi:10.1016/j.ymssp.2015.10.025.
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.