下面的式子源自於定義、歐拉公式以及基本三角函數恆等式:
等等(A000012, A033999, A099837, A176742,.., A100051, ...)。這些式子顯示出cq(n)為實數。
Ramanujan, On Certain Trigonometric Sums ... These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.
(Papers, p. 179). In a footnote cites pp. 360–370 of the Dirichlet-Dedekind Vorlesungen über Zahlentheorie, 4th ed.
- Hardy, G. H., Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work, Providence RI: AMS / Chelsea, 1999, ISBN 978-0-8218-2023-0
- Nathanson, Melvyn B., Additive Number Theory: the Classical Bases, Graduate Texts in Mathematics 164, Springer-Verlag, Section A.7, 1996, ISBN 0-387-94656-X, Zbl 0859.11002.
- Nicol, C. A. Some formulas involving Ramanujan sums. Canad. J. Math. 1962, 14: 284–286. doi:10.4153/CJM-1962-019-8.
- Ramanujan, Srinivasa, On Certain Trigonometric Sums and their Applications in the Theory of Numbers, Transactions of the Cambridge Philosophical Society, 1918, 22 (15): 259–276 (pp. 179–199 of his Collected Papers)
- Ramanujan, Srinivasa, On Certain Arithmetical Functions, Transactions of the Cambridge Philosophical Society, 1916, 22 (9): 159–184 (pp. 136–163 of his Collected Papers)
- Schwarz, Wolfgang; Spilker, Jürgen, Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties, London Mathematical Society Lecture Note Series 184, Cambridge University Press, 1994, ISBN 0-521-42725-8, Zbl 0807.11001