Loading AI tools
来自维基百科,自由的百科全书
XGBoost[1]是一個開源軟件庫,為C++、Java、Python[2]、R、[3]和Julia[4]提供了一個梯度提升框架,適用於Linux、Windows[5]、以及macOS[6]。根據項目的描述,它的目的在於提供一個"可擴展、可移植和分佈式梯度提升(GBM、GBRT、GBDT)庫"。XGBoost除了可以在單機上運行,也支持運行在分佈式框架如Apache Hadoop、Apache Spark和Apache Flink上。近幾年,由於該算法受到許多在機器學習競賽中獲獎團隊的青睞,因而受到了廣泛的歡迎和關注[7]。
XGBoost最初是一個研究項目,由當時在Distributed (Deep) Machine Learning Community (DMLC) 組裏的陳天奇負責[8]。它最初作為一個可以由libsvm配置文件進行配置的終端應用程式。在Higgs機器學習挑戰中取得勝利後,它開始在機器學習競賽圈子中被廣為人知。不久之後,相應的Python和R的軟件包被開發了出來。XGBoost現在也已經為Julia、Scala、Java和其他語言提供了軟件包實現。這使得更多的開發者了解了XGBoost,並且讓其在Kaggle社區備受歡迎,被廣泛用於大量的競賽[7]。
很快地,XGBoost就與其他多個軟件包一起使用,使其更易於在各自的社區中使用。它現在已經與Python用戶的scikit-learn以及與R的Caret軟件包集成在一起。它還可以使用抽象的Rabit[9]及XGBoost4J集成到諸如Apache Spark、Apache Hadoop和Apache Flink等數據流框架中[10]。XGBoost也可用於FPGAs的OpenCL[11]。陳天奇和Carlos Guestrin發表了一種高效、可擴展的XGBoost實現[12]。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.