Loading AI tools
一階理論無法控制無窮模型的大小 来自维基百科,自由的百科全书
在數理邏輯中,經典勒文海姆–斯科倫定理(Löwenheim–Skolem theorem)聲稱對於標識(signature)為 的任何可數一階邏輯語言 L 和 L-結構 M,存在一個可數無限基本子結構 N M。 這個定理的自然和有用的推論是所有一致的 L-理論都有可數的模型。
這裏的標識由常量集合 、函數集合 、關係符號集合 、和表示函數和關係符號的元數的函數 組成。在這個上下文中 L-結構,由底層集合(經常指示為「M」)和 L 的函數和關係符號的釋義組成。L 的常量在 M 中的釋義就是 M 的成員。類似的,-元函數 被指派為 M 中的 -元函數 的圖,而-元關係 的釋義被指派為 M 中的 -元關係。語言 L 是可數的,如果在 L 中的常量、函數和關係符號是可數的。
一個周知的不可數模型是所有實數的集合,帶有次序關係 "<" 作為唯一的關係,和加法與乘法作為函數。有序域的公理是一階句子;最小上界公理不是一階的而是二階的。這個定理蘊涵了實數域的某個可數無限的子域,因此不同於實數域,但滿足了實數域所滿足的所有一階句子。(作為可數的有序域,它不能滿足最小上界公理)。例如,特定多項式方程有解(在這個模型中)的斷言是一階句子,因此在斷言了其存在的可數子模型中是真的,若且唯若它在實數域中是真的。
數學家考慮的多數數學結構,特別是多數範疇的多數成員,是這裏定義意義上的模型。勒文海姆–斯科倫定理告訴我們如果它們是不可數的,它們不能被任何一階句子的集合唯一性的選取出來。
對於在模型 M 中為真的如下形式的一階句子
或
有一個Skolem 函數 f,就是說映射 x 到斷言了其存在的 y 的函數,使得
在 M 中為真。因為有很多這樣的 y 的值,必須啟用選擇公理來推出 Skolem 函數的存在。
這個模型的某些成員可以直接用一階公式來定義,就是說,它們的存在被如下形式的句子所斷言
並且因為只有可數多個一階公式,只有可數多個成員可以用這種方式直接定義。
證明的想法是: 開始於這個模型的所有一階可定義成員的集合,並接着在所有 Skolem 函數下閉合它。這個閉包必定最多是可數無限的。這個模型的子集是這個定理斷言了其存在的子模型。
上述定理假定了有限或可數無限的語言。更一般的勒文海姆–斯科倫定理做其他有關基數的假定。類似於這個經典定理的某些定理,斷言更小的子模型的存在(「向下」勒文海姆–斯科倫定理);其他一些斷言更大基數的模型的存在(「向上」勒文海姆–斯科倫定理)。
勒文海姆-斯科倫定理: 如果 是一個含有有限可數個數的命題組成的集合,並且集合 是可以滿足的( SAT),那麼至少存在一個模型(或叫作指派,或叫作解釋 (Interpretation)) 用符號記作 I, ,且這個模型 I 指派解釋也是可數的
證明:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.