經顱磁振導航聚焦超聲波(英語:transcranial Magnetic Resonance guided Focused Ultrasound,tcMRgFUS or MRgFUS),中文又簡稱醫薩刀[1]、神波刀[2],及磁波刀[3],為專用於腦部的高強度聚焦超聲系統(High Intensity Focused Ultrasound,HIFU)作用於腦組織達到特定的應用,並藉由磁共振成像進行即時解剖導航及溫度監控,應用根據給予組織的溫度高低而分為熱療、熱破壞及熱消融,在無特別聲明的狀況下,一般指的是熱消融的功用;根據聚焦超聲波基金會(Focused Ultrasound Foundation) 2020年的領域發展報告[4],目前此技術已通過10個國家以上之衛生機關或區域組織的相關認證法規可使用於特定適應症,包含澳洲[5]、加拿大[6]、歐盟[7]、日本[8]、台灣[9]、美國[10]、中國[11]......等。經顱磁振導航聚焦超聲波是一種神經外科領域新興的微創手術的方式[12],機器本體結合磁共振成像機[13]與聚焦超聲波,藉由磁共振成像監控顱內溫度[14]使得操作者能安心地使用高強度聚焦超聲探頭在顱內聚焦音波消融目標組織[15],病患全程清醒且無實體手術切口,僅需在術前在頭皮四個點施打局部麻醉藥來固定穩定頭部的支架,此特性使得神經內科醫師可以在手術過程中對病患即時進行相關的理學檢查,病患本身也能在手術時馬上感受到身體的改變[16]。
- 磁共振成像在經顱磁振導航聚焦超聲波手術中帶來腦部結構與組織的輔助導引,並在音波給予期間應用磁共振成像溫度成像技術[17]即時監控手術區域的溫度提升。
- 超聲波在經顱磁振導航聚焦超聲波手術中帶來能量,達到類似手術刀的功能來進行手術;透過一千個以上的超聲波振元應用相位校正技術[18]讓超聲波束能在穿透頭骨後的巨大衰減中保持有效聚焦,更重要的是焦點保持一定的能量,以進行長累積時間的低溫度治療,攝氏50~54℃[19],或是短累積時間的高溫治療,攝氏55℃以上[20],來達到長期維持的療效。
- 音波在遭遇密度變化會產生折射、反射,甚至全反射,因此在一般的超聲波影像檢查,技術人員會在皮膚表面塗上冰涼的凝膠,緩衝超聲波探頭至表皮的密度變化,在經顱磁振導航聚焦超聲波手術中則利用水作為頭部與超聲波震源間的密度緩衝物質,並利用電子控制系統的演算法進行超聲波相位的調控,避免反相位的振幅抵銷,也可以小幅度移動焦點,同時系統會監控空蝕現象(Cavitation)[21]的產生,即時調控超聲波強度避免此現象發生並在顱內發出非預期的衝擊波;但在另一類應用中,會降低音波頻率[22]加上注射超聲造影劑來刻意造成空蝕現象的產生,超聲波震盪會使微氣泡體積隨着超聲波的疏密變化而改變,體積一旦超過閾值會使微氣泡爆破並發射衝擊波,短暫的打開血腦屏障讓藥物得以投送進腦組織[23],此應用的範圍為局部組織而非單一靶點,因此不需要精細的磁共振成像輔助導引以及穩定頭部的支架,但其使用目的已全然不同,目標為輔助投送藥物進入腦部而非燒融組織形成傷口,目前此技術應用於癲癇、阿茲海默症、膠質母細胞瘤的人體試驗中[24]。
- 腦神經手術中,有傳統的手術刀,及利用通電探針的射頻燒灼術(Radiofrequency Ablation)和使用伽瑪射線的加馬刀(Gamma Knife),以及應用超聲波的經顱磁振導航聚焦超聲波進行熱消融等許多方式,但臨床機轉大同小異,不外乎利用細胞凋亡[25]、細胞壞死[26]或是直接切除組織讓有問題的細胞無法作用來達到病症的消除或減緩;因此治療的顱內標的或靶點大多通用,例如控制顫抖的首選靶點為丘腦腹內側核(Vim)[27]。
- 目前各國已通過醫療法規核可使用經顱磁振導航聚焦超聲波治療之適應症主要為動作障礙類的疾病,如原發性顫抖症[28]、顫抖型帕金森氏症[29],與帕金森氏症的動作障礙症狀緩解[30],其它疾病如癲癇[31]、X染色體性聯遺傳肌張力不全帕金森氏症症候群[32]尚在臨床試驗階段。
- 部分精神類疾病如強迫症[33]、憂鬱症[34]或是神經痛症狀如三叉神經痛[35]甚至是腦部腫瘤仍在臨床試驗階段[36]。
- 美國目前有聯邦醫療保險(Medicare)[37]及部分私立保險公司同意為使用經顱磁振導航聚焦超聲波手術治療原發性顫抖症的保戶進行給付[38],如藍十字藍盾協會(Blue Cross and Blue Shield Association) [39]及聯合健康保險(Unitedhealthcare)[40]。
- 日本於2019年6月將此治療術式納入日本國民健康保險[41]。
經顱磁振導航聚焦超聲波與海扶刀同屬高強度聚焦超聲[42] 技術應用中的熱消融,需提升溫度直至組織消融,但經顱磁振導航聚焦超聲波有專用的中空半圓形超聲波探頭讓頭顱置入,音波為了穿透頭骨必須進行相位校正並且增加振元數量以達到能在顱內進行熱消融的能量並且使用磁共振成像進行解剖導航;而海扶刀一般應用於體部,常用於攝護腺癌[43]、子宮肌瘤 [44]、乳癌 [45],或骨肉瘤 [46],因為病灶皆不被骨組織覆蓋,音波傳遞過程的衰減在可接受的範圍,故普遍利用超聲波影像作為導航。
ARTG 128137. Therapeutic Goods Administration,Department of Health,Australia Gonernment.[失效連結]
PMA P150038. U.S. Food and Drug Administration. 2016-07-11 [2021-07-02]. (原始內容存檔於2022-01-25).
Na Young Jung; Jin Woo Chang. Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future. Journal of korean medical science. 2018, 33(44): e279. doi:10.3346/jkms.2018.33.e279.
存档副本. [2022-07-11]. (原始內容存檔於2022-03-24).
Tony R. Wang; Aaron E. Bond; Robert F. Dallapiazza; Aaron Blanke; David Tilden; Thomas E. Huerta; Shayan Moosa; Francesco U. Prada; W. Jeffrey Elias. Transcranial magnetic resonance imaging-guided focused ultrasound thalamotomy for tremor: technical note. Neurosurgical Focus. 2018, 44 (2): E3. PMID 29385914. doi:10.3171/2017.10.FOCUS17609.
Lukas Winter; Eva Oberacker; Katharina Paul; Yiyi Ji; Celal Oezerdem; Pirus Ghadjar; Alexander Thieme; Volker Budach; Peter Wust; Thoralf Niendorf. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. International Journal of Hyperthermia. 2016, 32 (1): 62–75. doi:10.3109/02656736.2015.1108462.
Lukas Winter; Eva Oberacker; Katharina Paul; Yiyi Ji; Celal Oezerdem; Pirus Ghadjar; Alexander Thieme; Volker Budach; Peter Wust; Thoralf Niendorf. Acoustical properties of the human skull. The Journal of the Acoustical Society of America. 1998, 63 (5): 1576(1978). doi:10.1121/1.381852.
Cesare Gagliardo; Maurizio Marrale; Costanza D'Angelo; Roberto Cannella; Giorgio Collura; Gerardo Iacopino; Marco D'Amelio; Alessandro Napoli; Tommaso Vincenzo Bartolotta; Carlo Catalano; Roberto Lagalla; Massimo Midiri. Transcranial Magnetic Resonance Imaging-Guided Focused Ultrasound Treatment at 1.5 T: A Retrospective Study on Treatment- and Patient-Related Parameters Obtained From 52 Procedures. Frontiers in Physics. 2020, 7: 223. ISSN 2296-424X. doi:10.3389/fphy.2019.00223.
Costas D. Arvanitis; Nathan McDannold. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies. The International Journal of Medical Physics Research and Practice. 2013, 40 (11): 112901. doi:10.1118/1.4823793.
Fukuoka S; Oka K; Seo Y; Tokanoshi M; Sumi Y; Nakamura H; Nakamura J; Ikawa F. Apoptosis following gamma knife radiosurgery in a case of acoustic schwannoma. Stereotactic and Functional Neurosurgery. 1998, 70 (Suppl 1): 88–94. PMID 9782240. doi:10.1159/000056411.
Andrea Franzini; Shayan Moosa; Domenico Servello; Isabella Small; Francesco DiMeco; Zhiyuan Xu; William Jeffrey Elias; Angelo Franzini; Francesco Prada. Ablative brain surgery: an overview, International Journal of Hyperthermia 36 (2): 64–80. 2019. doi:10.1080/02656736.2019.1616833.
Joshua K Wong; James H Cauraugh; Kwo Wei David Ho; Matthew Broderick; Adolfo Ramirez-Zamora; Leonardo Almeida; Aparna Wagle Shukla; Christina A Wilson; Rob Ma de Bie; Frances M Weaver; Nyeonju Kang; Michael S Okun. STN vs. GPi deep brain stimulation for tremor suppression in Parkinson disease: A systematic review and meta-analysis. Journal of Parkinsonism and Related Disorders. 2019, 58: 56–62. doi:10.1016/j.parkreldis.2018.08.017.
Whitney E Parker; Elizabeth K Weidman; J Levi Chazen; Sumit N Niogi; Rafael Uribe-Cardenas; Michael G Kaplitt; Caitlin E Hoffman. Magnetic resonance-guided focused ultrasound for ablation of mesial temporal epilepsy circuits: modeling and theoretical feasibility of a novel noninvasive approach. Journal of Neurosurgerry. 2019, 133 (1): 1–2. doi:10.3171/2019.4.JNS182694.
Roland Dominic G. Jamora; Wei-Chieh Chang; Takaomi Taira. Transcranial Magnetic Resonance-Guided Focused Ultrasound in X-Linked Dystonia-Parkinsonism. Life. 2021, 11 (5): 392. doi:10.3390/life11050392.
Se Joo Kim; Daeyoung Roh; Hyun Ho Jung; Won Seok Chang; Chan-Hyung Kim; Jin Woo Chang. A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment-refractory obsessive-compulsive disorder: 2-year follow-up. Journal of psychiatry & neuroscience. 2018, 43 (4). PMID 29717977. doi:10.1503/jpn.170188.
Minsoo Kim; Chan-Hyung Kim; Hyun Ho Jung; Se Joo Kim; Jin Woo Chang. Treatment of Major Depressive Disorder via Magnetic Resonance–Guided Focused Ultrasound Surgery. Biological Psychiatry. 2018, 83 (1): E17–E18. doi:10.1016/j.biopsych.2017.05.008.
Marc N. Gallay; David Moser; Daniel Jeanmonod. MR-Guided Focused Ultrasound Central Lateral Thalamotomy for Trigeminal Neuralgia. Single Center Experience. Frontiers in Neurology. 2018, 11: 271. ISSN 1664-2295. doi:10.3389/fneur.2020.00271.
Christian G Chaussy; Stefan Thüroff. High-Intensity Focused Ultrasound for the Treatment of Prostate Cancer: A Review. Journal of Endourology. 2017, 31 (S1): 31-31. PMID 28355119. doi:10.1089/end.2016.0548.
Yongshuo Ji; Kaimeng Hu; Yu Zhang; Lijun Gu; Junqiu Zhu; Linglin Zhu; Yanfei Zhu; Hong Zhao. High-intensity focused ultrasound: noninvasive treatment for local unresectable recurrence of osteosarcoma. Archives of Gynecology and Obstetrics. 2017, 296 (6). PMID 28975434. doi:10.1007/s00404-017-4548-9.
Wenxi Yu; Lina Tang; Feng Lin; Yang Yao; Zan Shen; Xiaohui Zhou. High-intensity focused ultrasound: noninvasive treatment for local unresectable recurrence of osteosarcoma. Surgical Oncology. 2015, 24 (1). PMID 25453577. doi:10.1016/j.suronc.2014.10.001.