朗伯W函數

為x乘上e的x次方的反函數 来自维基百科,自由的百科全书

朗伯W函数

朗伯W函數(英語:Lambert W function,又稱為歐米加函數乘積對數),是反函數,其中指數函數是任意複數。對於任何複數,都有:

Thumb
的圖像,

由於函數不是單射,因此函數多值的(除了0以外)。如果我們把限制為實數,並要求是實數,那麼函數僅對於有定義,在內是多值的;如果加上的限制,則定義了一個單值函數(見圖)。我們有。而在內的分支,則記為,從遞減為

朗伯函數不能用初等函數來表示。它在組合數學中有許多用途,例如的計算。它可以用來解許多含有指數的方程,也出現在某些微分方程的解中,例如

Thumb
複平面上的朗伯W函數的函數圖形

微分和積分

朗伯 函數的積分形式為


,若

把被積函數的實部和虛部分離出來:


,則有 ,展開分離出實部和虛部,

,當時,易知


,上式還可化為

隱函數的求導法則,朗伯函數滿足以下的微分方程

因此:

函數,以及許多含有的表達式,都可以用變量代換來積分,也就是說

其中歐米加常數

性質

其中高德納箭號表示法

、若,則

泰勒級數

的泰勒級數如下:

收斂半徑


加法定理

複數值

實部

,

虛部

,

模長

模角

,

共軛值

,

特殊值

歐米加常數

應用

許多含有指數的方程都可以用函數來解出。一般的方法是把未知數都移到方程的一側,並設法化為的形式。

例子

例子1

更一般地,以下的方程

其中

兩邊同乘:

得到:

同除以:

得到:

同除:

可以用變量代換

化為

即:

同乘:

得出

帶入

因此最終的解為

若輔助方程:中,

,

輔助方程無實數解,原方程亦無實解;

若:,

輔助方程有一實數解,原方程有一實解:

若: ,

輔助方程有二實解,設為

例子2

用類似的方法,可知以下方程的解

例子3

以下方程的解

具有形式


例子4
 :  :

取對數,

取倒數,

最終解為 :

例子5

兩邊開次方並除以

化為

兩邊同乘

最終得

一般化

標準的 Lambert W 函數可用來表示以下超越代數方程式的解:

其中 a0, cr 為實常數。

其解為

Lambert W 函數之一般化[1][2][3] 包括:

  • 一項在低維空間內廣義相對論量子力學的應用(量子引力),實際上一種以前未知的 連結 於此二區域中,如 「Journal of Classical and Quantum Gravity」[4] 所示其 (1) 的右邊式現為二維多項式 x:
其中 r1r2 是不同實常數,為二維多項式的根。於此函數解有單一引數 xriao 為函數的參數。如此一來,此一般式類似於 「hypergeometric」(超幾何分佈)函數與 「Meijer G「,但屬於不同類函數。當 r1 = r2,(2)的兩方可分解為 (1) 因此其解簡化為標準 W 函數。(2)式代表着 「dilaton」(軸子)場的方程,可據此推導線性,雙體重力問題 1+1 維(一空間維與一時間維)當兩不等(靜止)質量,以及,量子力學的特徵能Delta位勢阱給不等電位於一維空間。
  • 量子力學的一特例特徵能的分析解三體問題,亦即(三維)氫分子離子[5]於此 (1)(或 (2))的右手邊現為無限級數多項式之比於 x
其中 risi 是相異實常數而 x 是特徵能和內核距離R之函數。式 (3) 與其特例表示於 (1) 和 (2) 是與一更大類型延遲微分方程。由於哈代的「虛假導數」概念,多根的特殊情況得以解決[6]

Lambert "W" 函數於基礎物理問題之應用並未完全即使標準情況如 (1) 最近在原子,分子,與光學物理領域可見[7] 以及黎曼假設的 Keiper-Li 準則 [8]

圖象

計算

W函數可以用以下的遞推關係算出:

參考來源

外部連結

Wikiwand - on

Seamless Wikipedia browsing. On steroids.