热门问题
时间线
聊天
视角

扭歪多面體

来自维基百科,自由的百科全书

Remove ads

幾何學中,扭歪[1][2]多面體(英語:Skew polyhedron)是指頂點、邊或面並非全部位於同一個三維空間中的多面體,即扭歪多邊形的高一維類比,因此其無法找到一個唯一的內部區域以及其體積

正扭歪多面體代表每個面全等、每條邊等長、每個角都相等的扭歪多面體,是一系列可能具有非平面的面或頂點圖。考克斯特的研究着重於具有扭歪頂點圖新的四維多面體,後期多由布蘭科·格林鮑姆英語Branko Grünbaum研究有扭歪面的形狀[4]

具有無限多個面的扭歪多面體稱為扭歪無限面體。除了扭歪無限面體之外的扭歪多面體僅能存在於四維或以上的空間。

歷史

關於考克斯特,1926年時,約翰·弗林德斯·皮特里將扭歪多邊形(非平面多邊形)的概念廣義化。

考克斯特針對這種圖提出一個施萊夫利符號的擴展符號 {l,m|n} ,其中以{l,m}表示其頂點:每個頂點都是ml邊形的公共頂點。他們的頂點圖是扭歪多邊形,以鋸齒的形式存在於兩個面中。

能表示為{l,m|n}的正扭歪多面體存在以下等式:

第一系列的{l,m|n}正扭歪多面體與五個正多面體和一個星形正多面體相關:

更多資訊 {l, m | n}, 面 ...
Remove ads

四維的正扭歪多面體

更多資訊 A4 考克斯特平面投影, {4, 6 | 3} ...

考克斯特在他的論文《三維和四維空間的正扭歪多面體及其類似物》[5]中列出了較多的一系列扭歪多面體。

更多資訊 {l, m | n}, 面 ...
更多資訊 {l, m | n}, 面 ...
Remove ads

參見

參考文獻

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads