在線性代數中,多重線性映射是有多個向量變量而對每個變量都是線性的函數。 n個變量的多線性映射也叫做n重線性映射。 如果所有變量屬於同一個空間,可以考慮對稱、反對稱和交替的n重線性映射。後兩個是一致的,如果底層的環(或域)有不同於二的特徵,否則前兩個是一致的。 一般討論可見多重線性代數。 在實數域上的內積(點積)是兩個變量的對稱雙線性函數, 矩陣的行列式是方矩陣的列(或行)的斜對稱多重線性函數。 矩陣的跡數是方矩陣的列(或行)的多重線性函數。 雙線性映射是多重線性映射。 可以考慮在有單位元的交換環K上的n×n矩陣上的多重線性函數為矩陣的行(或等價說列)上的函數。設A是這樣的矩陣而 a i {\displaystyle a_{i}} , 1 ≤ i ≤ n是A的行。則多重線性函數D可以寫為 D ( A ) = D ( a 1 , … , a n ) {\displaystyle D(A)=D(a_{1},\ldots ,a_{n})} , 滿足 D ( a 1 , … , c a i + a i ′ , … , a n ) = c D ( a 1 , … , a i , … , a n ) + D ( a 1 , … , a i ′ , … , a n ) {\displaystyle D(a_{1},\ldots ,ca_{i}+a_{i}',\ldots ,a_{n})=cD(a_{1},\ldots ,a_{i},\ldots ,a_{n})+D(a_{1},\ldots ,a_{i}',\ldots ,a_{n})} , 如果我們設 ε j {\displaystyle \varepsilon _{j}} 表示單位矩陣的第j行,我們用下列方法表示 a i {\displaystyle a_{i}} a i = ∑ j = 1 n A ( i , j ) ε j {\displaystyle a_{i}=\sum _{j=1}^{n}A(i,j)\varepsilon _{j}} 利用D的多線性我們重寫D(A)為 D ( A ) = D ( ∑ j = 1 n A ( i , j ) ε j , a 2 , … , a n ) = ∑ j = 1 n A ( i , j ) D ( ε j , a 2 , … , a n ) {\displaystyle D(A)=D\left(\sum _{j=1}^{n}A(i,j)\varepsilon _{j},a_{2},\ldots ,a_{n}\right)=\sum _{j=1}^{n}A(i,j)D(\varepsilon _{j},a_{2},\ldots ,a_{n})} 繼續這種代換於每個 a i {\displaystyle a_{i}} 我們得到,對於1 ≤ i ≤ n D ( A ) = ∑ 1 ≤ k i ≤ n A ( 1 , k 1 ) A ( 2 , k 2 ) … A ( n , k n ) D ( ε k 1 , … , ε k n ) {\displaystyle D(A)=\sum _{1\leq k_{i}\leq n}A(1,k_{1})A(2,k_{2})\dots A(n,k_{n})D(\varepsilon _{k_{1}},\dots ,\varepsilon _{k_{n}})} 所以D(A)是唯一的決定自它如何運算於 D ( ε k 1 , … , ε k n ) {\displaystyle D(\varepsilon _{k_{1}},\dots ,\varepsilon _{k_{n}})} 上。 在2×2矩陣的情況下我們得到 D ( A ) = A 1 , 1 A 2 , 1 D ( ε 1 , ε 1 ) + A 1 , 1 A 2 , 2 D ( ε 1 , ε 2 ) + A 1 , 2 A 2 , 1 D ( ε 2 , ε 1 ) + A 1 , 2 A 2 , 2 D ( ε 2 , ε 2 ) {\displaystyle D(A)=A_{1,1}A_{2,1}D(\varepsilon _{1},\varepsilon _{1})+A_{1,1}A_{2,2}D(\varepsilon _{1},\varepsilon _{2})+A_{1,2}A_{2,1}D(\varepsilon _{2},\varepsilon _{1})+A_{1,2}A_{2,2}D(\varepsilon _{2},\varepsilon _{2})} , 這裏的 ε 1 = [ 1 , 0 ] {\displaystyle \varepsilon _{1}=[1,0]} 且 ε 2 = [ 0 , 1 ] {\displaystyle \varepsilon _{2}=[0,1]} 。如果我們限制D是交替函數,則 D ( ε 1 , ε 1 ) = D ( ε 2 , ε 2 ) = 0 {\displaystyle D(\varepsilon _{1},\varepsilon _{1})=D(\varepsilon _{2},\varepsilon _{2})=0} 且 D ( ε 2 , ε 1 ) = − D ( ε 1 , ε 2 ) = − D ( I ) {\displaystyle D(\varepsilon _{2},\varepsilon _{1})=-D(\varepsilon _{1},\varepsilon _{2})=-D(I)} 。設 D ( I ) = 1 {\displaystyle D(I)=1} 我們得到在2×2矩陣上行列式函數: D ( A ) = A 1 , 1 A 2 , 2 − A 1 , 2 A 2 , 1 {\displaystyle D(A)=A_{1,1}A_{2,2}-A_{1,2}A_{2,1}} , 多重線性映射有零值,只要它的一個參數是零。 對於n>1,唯一的也是線性映射的n-線性映射是零函數。 代數形式 多重線性形式 齊次多項式 齊次函數 張量 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.