在算術組合學中,塞邁雷迪定理(英語:Szemerédi's theorem)是個關於自然數集子集中的等差數列的結論。1936年,艾狄胥·帕爾和圖蘭·帕爾猜想[1]:若整數集 A 具有正的自然密度,則對任意的正整數 k, 都可以在 A 中找出一個 k 項的等差數列。匈牙利數學家塞邁雷迪·安德烈於1975年證明了此結論。
此條目需要精通或熟悉數學的編者參與及協助編輯。 (2019年6月17日) |
定理敍述
若自然數集的子集 A 滿足
則稱 A 具有正的上密度。塞邁雷迪定理斷言,若自然數集的一個子集具有正的上密度,則對任意的正整數 k, 該子集都包含無窮多個長為 k 的(公差不為 0) 的等差數列。
定理另有一個等價的有限性敍述(即不牽涉「無窮」的):對任意的正整數 k 和實數 都存在正整數
使得 {1, 2, ..., N} 的每個至少 δN 元的子集,都包含長為 k 的等差數列。
定義 rk(N) 為 {1, 2, ..., N} 的子集當中,不包含長為 k 的等差數列的最大子集的大小。塞邁雷迪定理給出漸近上界
換言之,rk(N) 隨 N 的增長慢於線性。
歷史
范德瓦爾登定理是塞邁雷迪定理的先驅,其於 1927 年獲證。
塞邁雷迪定理中, k = 1 和 k = 2 的情況顯然成立。 k = 3 的結論關乎薩萊姆-斯賓塞集(不包含 3 項等差數列的整數子集)的大小。1953 年,克勞斯·羅特[2] 利用類似哈代-李特爾伍德圓法的方法,證明了 k = 3 的結論。1969 年,塞邁雷迪·安德烈[3]利用組合學方法證明了 k = 4 的情況。在 1972 年,羅特[4]利用類似自己證明 k = 3 的情況的方法,給出了 k = 4 的情況的另證。
塞邁雷迪於 1975 年給出了適用於所有 k 的證明。[5] 他巧妙地擴展了自己先前對 k = 4 的情況的組合論證,艾狄胥稱該證明為「組合學推理的傑作」("a masterpiece of combinatorial reasoning")[6]. 定理亦有若干其他證明,較重要的有:1977 年希勒爾·菲爾斯滕貝格利用遍歷理論給出的證明[7][8],以及 2001 年高爾斯結合傅里葉分析和組合數學給出的證明[9]。陶哲軒稱塞邁雷迪定理的眾多證明為「羅塞塔石碑」,因為它們連結了幾個乍看之下迥異的數學分支。[10]
rk(N) 的具體大小
rk(N) 的確切增長速度仍然未知。目前所知的上下界為
其中 歐布萊恩(Kevin O'Bryant) 證出了上述的下界[11] ,其證明建基於貝哈連德(Felix Behrend)[12]、羅伯特·藍欽[13],以及埃爾金(Michael Elkin) [14][15]先前的成果。上界由高爾斯證出。[9]
對於較小的 k, 可以找到比起一般情況更緊的上下界。當 k = 3 時,布爾甘[16][17]、希斯-布朗[18]、塞邁雷迪[19],以及湯姆·桑德斯[20]依次給出了愈來愈好的下界。目前所知的上下界為
兩邊的界限分別由歐布萊恩[11] 和布魯姆(Thomas Bloom) [21] 給出。
當 k = 4 時,本·格林和陶哲軒[22][23] 證明了存在 c > 0 使得
推廣
希勒爾·菲爾斯滕貝格和伊扎克·卡茨內勒松利用遍歷理論整明了塞邁雷迪定理的高維推廣。[24] 高爾斯[25]、沃伊傑赫·勒德爾和約澤夫·斯科肯 (Jozef Skokan) [26][27] ,以及布蘭登·納格 (Brendan Nagle)、 勒德爾和馬蒂亞斯·沙赫特[28] ,和陶哲軒[29]給出了各自的組合學證明。
亞歷山大·萊布門 (Alexander Leibman) 和維塔利·別爾格爾松[30] 給出定理對多項式列的推廣:若 的上密度為正,且 為滿足 的整值多項式,則存在無窮多組 使得對都有 萊布門和別爾格爾松的結果同樣適用於高維的情況。
塞邁雷迪定理的有限性版本可推廣至有限的加法群上,例如有限域上的向量空間。[31] 定理在有限域上的類比,是有助理解原定理(在正整數集上)的模型。[32] 所謂封頂集問題,就是要找出向量空間 所包含的無 3 項等差數列的最大子集的大小,即塞邁雷迪定理當 k = 3 時的界限。
格林-陶定理斷言,存在任意長的質數等差數列。此結論不能由塞邁雷迪定理推出,因為質數集的密度為 0. 本·格林和陶哲軒在其證明中引入了「相對性」(英語:relative) 的塞邁雷迪定理,該定理適用於任意具特定偽隨機性的整數子集(允許密度為 0)。大衛·康倫,雅各布·福克斯和趙宇飛[33] (Yufei Zhao)其後亦給出了適用於更一般情況的相對性塞邁雷迪定理。[34][35]
埃爾德什等差數列猜想(斷言倒數和發散的集合,必有任意長的等差數列)可以推出塞邁雷迪定理和格林-陶定理。
參見
- 與等差數列有關的問題
- 遍歷拉姆齊理論
- 算術組合學
- 塞邁雷迪正則性引理
參考資料
延申閱讀
外部鏈結
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.