Loading AI tools
来自维基百科,自由的百科全书
在拓撲學及其相關數學領域,一個商空間(quotient space,也稱為等化空間identification space)直觀上說是將一個給定空間的一些點等同或「黏合在一起」;由一個等價關係確定哪些點是等同的。這是從給定空間構造新空間的常見方法。
假設X是一個拓撲空間,~是X上一個等價關係。我們能夠在商集合X/~(這個集合有所有~的等價類組成)上定義一個拓撲使得:X/~中一個等價集合是開集若且唯若他們的併集在X中是開集。所得的拓撲稱為在商集合X/~上的商拓撲(quotient topology)。
商拓撲可以由如下方式等價地定義:設q : X → X/~是將X的任何元素映為它的等價類的投影映射()。則X/~上的商拓撲定義為使q 連續的最細拓撲(finest topology)。
給定一個從拓撲空間X到集合Y的滿射f : X → Y,我們可以在Y上定義商拓撲為使f連續的最細拓撲。這等價於說集合V ⊆ Y在Y中開若且唯若它的原像f−1(V)在X中開。映射f在X上誘導了一個等價關係,即x1~x2若且唯若f(x1) = f(x2)。這個商空間X/~ 同胚於Y(帶着它的商拓撲),同構映射為將x的等價類映為f(x)。
一般地,如果Y具有由一個滿連續映射f : X → Y確定的商拓撲,則f稱為一個商映射(quotient map)。
商映射 q : X → Y是由如下性質刻畫的滿射:如果Z是任何拓撲空間,f : Y → Z是任何函數,則f連續若且唯若f O q連續。
商空間X/~與商映q : X → X/~一起由如下泛性質刻畫。如果g : X → Z是一個連續映射使得:對所有a與b屬於X,a~b蘊含g(a)=g(b),則存在惟一連續映射f : X/~ → Z使得g = f O q。我們稱 g「下降到商」。
因此定義在X/~商的連續映射恰是由定義在X上與等價關係一致的連續映射(它們將同一個等價類中的元素映到相同的像)誘導的。在研究商空間時,時常使用這個判據。
給定一個連續滿射f : X → Y,關於f是否為商映射的判據是有用的。兩個充分條件是f為開映射或閉映射。注意這兩個條件只是充分條件而不是必要的。容易構造出不開或不閉的商映射例子。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.