在幾何學裏,同心的物體的中心或中心軸都在同一位置。圓圈、圓球、圓柱、圓環,都可以是同心的。稱同心的圓圈為同心圓,同心的圓球為同心球,同心的圓柱為同心柱,同心的圓環為同心環。 同心圓的中心都在同一位置。 假設,兩個同心圓的半徑分別為 r 1 {\displaystyle r_{1}} 與 r 2 {\displaystyle r_{2}} ,則兩個同心圓的圓周比是 C 1 : C 2 = r 1 : r 2 = r 1 r 2 {\displaystyle C_{1}:C_{2}=r_{1}:r_{2}={\frac {r_{1}}{r_{2}}}} 。 兩個同心圓的面積比是 A 1 : A 2 = r 1 2 : r 2 2 = r 1 2 r 2 2 {\displaystyle A_{1}:A_{2}=r_{1}^{2}:r_{2}^{2}={\frac {r_{1}^{2}}{r_{2}^{2}}}} 。 假設,兩個同心球或同心環的半徑分別為 r 1 {\displaystyle r_{1}} 與 r 2 {\displaystyle r_{2}} ,則面積比是 A 1 : A 2 = r 1 2 : r 2 2 = r 1 2 r 2 2 {\displaystyle A_{1}:A_{2}=r_{1}^{2}:r_{2}^{2}={\frac {r_{1}^{2}}{r_{2}^{2}}}} 。 容積比是 V 1 : V 2 = r 1 3 : r 2 3 = r 1 3 r 2 3 {\displaystyle V_{1}:V_{2}=r_{1}^{3}:r_{2}^{3}={\frac {r_{1}^{3}}{r_{2}^{3}}}} 。 假設,兩個同心柱的半徑分別為 r 1 {\displaystyle r_{1}} 與 r 2 {\displaystyle r_{2}} ,則面積比與容積比是 A 1 : A 2 = V 1 : V 2 = r 1 2 : r 2 2 = r 1 2 r 2 2 {\displaystyle A_{1}:A_{2}=V_{1}:V_{2}=r_{1}^{2}:r_{2}^{2}={\frac {r_{1}^{2}}{r_{2}^{2}}}} 。 參閱 離心率 阿波羅尼奧斯圓 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.