Loading AI tools
中國衛星導航系統 来自维基百科,自由的百科全书
北斗衞星導航系統(簡稱北斗系統)是一個衞星導航系統[4],能為全球用戶提供全天候、全天時、高精度的定位、導航和授時服務。北斗系統發展共有三代,自第二代開始的北斗系統被正式稱為「北斗衞星導航系統」。
此條目訊號傳輸部分需要更新。 (2020年11月16日) |
北斗一號系統(第一代北斗系統)由三顆衞星提供區域定位服務。從2000年開始,該系統主要在中國境內提供導航服務。2012年12月,北斗一號的最後一顆衞星壽命到期,北斗衞星導航試驗系統停止運作。
北斗二號系統(第二代北斗系統)是一個包含16顆衞星的全球衞星導航系統,分別為6顆靜止軌道衞星、6顆傾斜地球同步軌道衞星、4顆中地球軌道衞星。2012年11月,第二代北斗系統開始在亞太地區為用戶提供區域定位服務[5]。
北斗三號系統(第三代北斗系統)由三種不同軌道的衞星組成,包括24顆地球中圓軌道衞星(覆蓋全球),3顆傾斜地球同步軌道衞星(覆蓋亞太大部分地區)和3顆地球靜止軌道衞星(覆蓋中國)[6]。北斗三號於2018年提前開放了北斗系統的全球定位功能[7]。北斗三號系統於2020年7月31日完整開通[8]。
北斗衞星導航系統(BDS)、美國全球定位系統(GPS)、俄羅斯全球導航衞星系統(GLONASS)和歐盟伽利略定位系統(Galileo)為聯合國衞星導航委員會認定的全球衞星導航系統四大核心供應商[9]。
「北斗衞星導航系統」是這個系統的官方名稱,它是以北斗七星命名的,這是中國古代天文學家給大熊座最明亮的七顆星的命名。歷史上,人們利用這七顆星來找到北極星以確定方向。因此,「北斗」這個名稱隱含了這個衞星導航系統的目的。
中國為北斗衞星導航系統制定了「三步走」發展規劃,從1994年開始發展的試驗系統(第一代系統)為第一步,2004年開始發展的正式系統(第二代系統)為第二步。至2012年完成對亞太大部分地區的覆蓋並正式提供衞星導航服務,此戰略的前兩步已經完成。根據計劃,北斗衞星導航系統(第三代系統)第三步將在2018年覆蓋「一帶一路」國家,2020年完成,屆時將實現全球的衞星導航功能。
時間節點 | 2004 | 2012 | 2020 |
---|---|---|---|
實現目標 | 區域有源定位 | 區域無源定位 | 全球無源定位 |
20世紀70年代,中國開始研究衞星導航系統的技術和方案,但之後這項名為「燈塔」的研究計劃被取消。[13]
1983年,中國航天專家、「863計劃」倡導者之一的陳芳允院士提出「雙星定位」建設方案,即:把地心視為一顆虛擬衞星,再發射兩顆靜止軌道通訊衞星,配合地面高度座標實現對區域內地面目標的快速定位。[14]
1989年,中國使用通訊衞星先進行試驗,驗證了其可行性,之後的北斗衞星導航試驗系統即基於此方案。[15]
1990年海灣戰爭中,以美國為首的多國部隊通過衞星準確定位與彈道導彈結合,全面擊潰伊拉克軍隊,中國開始認真考慮自組衞星系統的軍事價值。
1993年7月,中美發生銀河號事件衝突,有傳言認為美國局部關閉該船所在印度洋海區內的GPS服務系統,使「銀河號」無法繼續行駛。基於這種威脅的可能推動了中國啟動北斗一號系統的建設。[16][17]
1994年,中國正式開始北斗衞星導航試驗系統(北斗一號系統)的研製,並在2000年10月31日和12月21日相繼發射了兩顆靜止軌道衞星,區域性的導航功能得以實現。[15][18]
2003年又發射了一顆備份衞星,完成了北斗衞星導航試驗系統的組建。
衞星 | 發射日期 | 運載火箭 | 軌道 |
---|---|---|---|
第1顆北斗導航試驗衞星 | 2000年10月31日 | CZ-3A | GEO |
第2顆北斗導航試驗衞星 | 2000年12月21日 | CZ-3A | GEO |
第3顆北斗導航試驗衞星 | 2003年5月25日 | CZ-3A | GEO |
第4顆北斗導航試驗衞星 | 2007年2月3日 | CZ-3A | GEO |
2003年9月,中國打算加入歐盟的伽利略定位系統計劃,並在接下來的幾年中投入了2.3億歐元的資金。中國與歐盟在2004年10月9日正式簽署伽利略計劃技術合作協議。2008年1月,香港南華早報在「中國不當『伽利略計劃小夥伴』」的報道中指出:中國不滿其在伽利略計劃中的被排斥,之前的投資沒有得到任何回報,將推出北斗二代與伽利略定位系統競爭。
21世紀初,最適合衞星導航的黃金頻段已經被美國和俄羅斯全部佔用。中國與歐盟同時希望建設衞星導航系統,因此推動國際電信聯盟從當時的航空導航頻段中,最大限度地擠出一小段頻率,供衞星導航共同使用。這一小段頻率,只有黃金頻段的四分之一,卻是建設一個全球衞星導航系統最基本的頻率需求,且各國均可平等申請。2000年4月17日,北斗系統和伽利略系統同時成功申報。按照國際電聯規則,必須在七年有效期內成功發射導航衞星。首顆北斗二號衞星2007年4月14日4時11分升空,值得一提的是,在三日後傳來衞星首個訊號時,距離國際電聯規定的申請失效最後期限僅剩不到四個小時[14]。
2004年,中國加速投入資金啟動了具有全球導航能力的北斗衞星導航系統的建設(北斗二號),並在2007年發射一顆中地球軌道衞星,進行了大量試驗。[15]2009年起,後續衞星持續發射,並在2011年開始對中國和周邊地區提供測試服務。[20]
截止2011年11月,北斗二代包含了10顆衞星,開始在中國投入服務[21]。
2012年底建成由地球同步軌道衞星、傾斜同步軌道衞星和中圓軌道衞星共14顆衞星構成的北斗二號系統,實現了全天時全天候為亞太大部分地區提供定位導航授時服務。[14][22]
衞星 | 發射日期 | 運載火箭 | 軌道 |
---|---|---|---|
第1顆北斗導航衞星 | 2007年4月14日 | CZ-3A | MEO |
第2顆北斗導航衞星 | 2009年4月15日 | CZ-3C | GEO |
第3顆北斗導航衞星 | 2010年1月17日 | CZ-3C | GEO |
第4顆北斗導航衞星 | 2010年6月2日 | CZ-3C | GEO |
第5顆北斗導航衞星 | 2010年8月1日 | CZ-3A | IGSO |
第6顆北斗導航衞星 | 2010年11月1日 | CZ-3C | GEO |
第7顆北斗導航衞星 | 2010年12月18日 | CZ-3A | IGSO |
第8顆北斗導航衞星 | 2011年4月10日 | CZ-3A | IGSO |
第9顆北斗導航衞星 | 2011年7月27日 | CZ-3A | IGSO |
第10顆北斗導航衞星 | 2011年12月2日 | CZ-3A | IGSO |
第11顆北斗導航衞星 | 2012年2月25日 | CZ-3C | GEO |
第12、13顆北斗導航衞星 | 2012年4月30日 | CZ-3B | MEO |
第14、15顆北斗導航衞星 | 2012年9月19日 | CZ-3B | MEO |
第16顆北斗導航衞星 | 2012年10月25日 | CZ-3C | GEO |
作為第二代北斗系統計劃的一部分,中華人民共和國政府已經以CHINASAT和COMPASS為名向國際電信聯盟無線電委員會(ITU)申請了無線電頻率分配。新計劃經歷了四種設計方案,如下表:
設計方案1 | 設計方案2 | 設計方案3 | 設計方案4 | |
---|---|---|---|---|
名稱 | CHINASAT | COMPASS-GEO | COMPASS-GEO&MEO | COMPASS-MG |
申請日期 | 1991 | 2000,2003修訂 | 2000,2003修訂 | 2003 |
星座設計 | 2~3 GEO | 4 GEO+9 IGSO | 4 GEO+12 MEO | 5 GEO+3 IGSO+27 MEO |
軌道 | 赤道上空 | 50°斜角,6個軌面 | 55°斜角,6個軌面 | 56°斜角,3個軌面 |
無線電頻率 | 通訊:S和L頻段 導航:2個L頻段 |
通訊:S和L波段 導航:4個L波段 |
通訊:S和L波段 導航:4個L波段 |
通訊:S和L波段 導航:4個L波段 |
服務範圍 | 亞太地區 | 亞太地區 | 亞太地區 | 全球 |
北斗三號系統的建設自2009年啟動。
按照計劃,該系統將在2018年覆蓋「一帶一路」國家,2020年完成建設提供全球定位服務,2035年建成以北斗為核心的綜合定位、導航、授時體系(Positioning, Navigation, and Timing—PNT)。北京時間2018年12月27日,國務院新聞發佈會宣佈,北斗三號提前兩年正式提供全球服務。[28]
2024年9月19日,北斗三號的最後兩顆備份衞星被成功發射入軌,標誌着包括備份星在內的北斗三號全球衞星導航系統工程正式收官。[29]
衞星 | 發射日期 | 運載火箭 | 軌道 |
---|---|---|---|
第17顆北斗導航衞星 | 2015年3月30日 | CZ-3C | IGSO |
第18、19顆北斗導航衞星 | 2015年7月25日 | CZ-3B | MEO |
第20顆北斗導航衞星 | 2015年9月30日 | CZ-3B | IGSO |
第21顆北斗導骯衞星 | 2016年2月1日 | CZ-3C | MEO |
第22顆北斗導航衞星 | 2016年3月20日 | CZ-3A | IGSO |
第23顆北斗導航衞星 | 2016年6月12日 | CZ-3C | GEO |
第24、25顆北斗導航衞星 | 2017年11月5日 | CZ-3B | MEO |
第26、27顆北斗導航衞星 | 2018年1月12日 | CZ-3B | MEO |
第28、29顆北斗導航衞星 | 2018年2月12日 | CZ-3B | MEO |
第30、31顆北斗導航衞星 | 2018年3月30日 | CZ-3B | MEO |
第32顆北斗導航衞星 | 2018年7月10日 | CZ-3A | IGSO |
第33、34顆北斗導航衞星 | 2018年7月29日 | CZ-3B | MEO |
第35、36顆北斗導航衞星 | 2018年8月25日 | CZ-3B | MEO |
第37、38顆北斗導航衞星 | 2018年9月19日 | CZ-3B | MEO |
第39、40顆北斗導航衞星 | 2018年10月15日 | CZ-3B | MEO |
第41顆北斗導航衞星 | 2018年11月1日 | CZ-3B | GEO |
第42、43顆北斗導航衞星 | 2018年11月19日 | CZ-3B | MEO |
第44顆北斗導航衞星 | 2019年4月20日 | CZ-3B | IGSO |
第45顆北斗導航衞星 | 2019年5月17日 | CZ-3C | GEO |
第46顆北斗導航衞星 | 2019年6月25日 | CZ-3B | IGSO |
第47、48顆北斗導航衞星 | 2019年9月23日 | CZ-3B | MEO |
第49顆北斗導航衞星 | 2019年11月5日 | CZ-3B | IGSO |
第50、51顆北斗導航衞星 | 2019年11月23日 | CZ-3B | MEO |
第52、53顆北斗導航衞星 | 2019年12月16日 | CZ-3B | MEO |
第54顆北斗導航衞星 | 2020年3月9日 | CZ-3B | GEO |
第55顆北斗導航衞星 | 2020年6月23日 | CZ-3B | GEO |
第56顆北斗導航衞星 | 2023年5月17日 | CZ-3B | GEO |
第57、58顆北斗導航衞星 | 2023年12月26日 | CZ-3B | MEO |
第59、60顆北斗導航衞星 | 2024年9月19日 | CZ-3B | MEO |
中國科學技術部部長萬鋼在2013年1月19日中國科技工作會議上透露,2013年將積極實施「中國東盟科技夥伴計劃」,啟動「中國-東盟聯合實驗室」、「中國-東盟技術轉移中心」建設,在東盟各國合作建設北斗系統地面站網。[30]
目前中國正在醞釀下一代衞星系統建設,向PNT(導航定位授時)方向發展,或於2035年初步建成中國泛在國家時空系統[31]。
北斗衞星導航系統提供定位、導航、授時服務,分為開放服務和授權服務兩種方式。[34]
任何用戶可免費獲得此服務,在精度衰減因子PDOP≤6條件下,全球大部分區域可用性優於99.9%。在全球區域實測定位精度均值:
2018年中國國內衞星導航產業產值已超過人民幣3000億元,支持北斗三號新訊號的,28nm工藝射頻基帶一體化SoC晶片,已在物聯網和消費電子領域得到廣泛應用。最新的22nm工藝雙頻定位晶片已具備市場化應用條件,全頻一體化高精度晶片正在研發,北斗晶片性能將再上一個台階。據統計,國產北斗導航型晶片模組累計銷量已突破8000萬片,高精度板卡和天線銷量已佔據國內30%和90%的市場份額,並輸出到100餘個國家和地區。北斗系統現已廣泛應用於交通運輸、公共安全、農林漁業、水文監測、氣象預報、通訊時統、電力調度、救災減災等領域,融入國家核心基礎設施,已產生顯著的經濟效益和社會效益。
2019年中國衞星導航與位置服務產業總體產值達3450億元。北斗與互聯網、大數據、人工智能等新技術的融合發展,正在構建以北斗時空資訊為主要內容的新興產業生態鏈,並正在成為北斗產業快速發展的新引擎和推進器,推動着生產生活方式變革和商業模式的不斷創新。[39]據中國日報報道,北斗系統第一顆衞星發射15年後,它每年為幾家大型企業產生的營業額高達3150萬美元,其中包括中國航天科工集團,高德軟件有限公司和中國兵器工業集團公司[40]。
北斗從其試驗系統開始就有其軍事目的,後來逐漸民用化,其正式系統也確定是一個軍民兩用的系統,也將能提供中國企業大量的機會。[41]
截至2012年底,中國有約4萬艘漁船安裝了北斗衞星導航系統的終端,終端向手機發送短訊為3角人民幣,高峰時每月發送70萬條。同時,中國有10萬輛車已安裝北斗的導航設備。[42]
截至2020年中,基於北斗的農機作業監管平台實現農機遠程管理與精準作業,服務農機設備超過5萬台,精細農業產量提高5%,農機油耗節約10%。[39]
2015年2月,央視報導電子公車站牌已經接入[43]北斗定位,上海近4千輛公車已經完成配備,站牌使用太陽能供電。
北斗系統廣泛應用於重點運輸過程監控、公路基礎設施安全監控、港口高精度實時定位調度等領域。
截至2019年4月,中國超過620萬輛營運車輛、3萬輛郵政和快遞車輛,36個城市的約8萬輛公交車、3200餘座內河導航設施、2900餘座海上導航設施已應用北斗系統,建成全球最大的營運車輛動態監管系統,有效提升了管理效率和道路運輸安全水平。
截至2019年底,中國超過650萬輛營運車輛、3萬輛郵政和快遞車輛,36個中心城市約8萬輛公交車、3200餘座內河導航設施、2900 余座海上導航設施已應用北斗系統。[39]
目前已建成部、省、市(縣)3級平台,實現6級業務應用,推廣北斗終端超過4.5萬台。受災地區利用北斗短報文功能,及時上報災害位置、突發災害資訊及災區救助資訊等。各級民政部門通過北斗終端進行救災物資的查詢管理和監控,大幅提升全國救災物資管理與調運水平。
經過多年發展,北斗已形成完整產業鏈,北斗基礎產品已實現自主可控,國產北斗晶片、模組等關鍵技術全面突破,性能指標與國際同類產品相當。多款北斗晶片實現規模化應用,工藝水平達到 22 納米。截至 2019 年底,國產北斗導航型晶片、模組等基礎產品銷量已突破1億片,國產高精度板卡和天線銷量分別佔中國市場30%和90%的份額。中國航天科工集團所屬航天系統公司依託具有自主知識 產權的高精度衞星定位授時技術與自主研製的高精度多模衞星導航晶片,為電信設備製造商、基礎設施管理部門、銀行和金融企業等提供高精度定位授時技術產品與服務解決方案。該公司累計開發北斗多模導航晶片6代10餘款,形成了高精度授時、差分定位和組合導航等多樣化產品型譜,已應用於交通、物流、司法、公安等眾多領域,年出貨量超200萬片。[39]
制約北斗導航民用的最大瓶頸是晶片價格,相對於GPS系統,北斗終端設備的晶片成本較高,若能夠廣泛生產和使用則可降低價格。[42]
國內外主流晶片廠商均推出兼容北斗系統的通導一體化晶片。據統計,2019年第一季度,在中國市場申請進網的手機有116款具有定位功能,其中支持北斗定位的有82款,北斗定位支持率達到70%。支持北斗系統的手錶、手環等智能穿戴設備,以及學生卡、老年卡等特殊關愛產品不斷湧現,得到廣泛應用。此外,北斗系統還廣泛應用到印度尼西亞土地確權、科威特建築施工、烏干達國土測試、緬甸精準農業、馬爾代夫海上打樁、泰國倉儲物流、巴基斯坦機場授時以及俄羅斯電力巡檢等多國不同領域。
2014年12月,央視在探討東風-41洲際彈道導彈的節目中由評論員表示,北斗衞星的軍用訊號基本已經全球覆蓋(可能是持續式或機動式覆蓋),並且可讓解放軍的多彈頭洲際導彈接收訊號,從集束式邁向分導式多彈頭,分裂後的每一個子彈頭都有導向能力可變軌飛向目標。[44]
北斗衞星導航試驗系統又稱為北斗一號,是中國的第一代衞星導航系統,即有源區域衞星定位系統,1994年正式立項,2000年發射2顆衞星後即能夠工作,2003年又發射了一顆備份衞星,試驗系統完成組建,該系統服務範圍為東經70°-140°,北緯5°-55°。[45]在衞星的壽命到期後(2012年12月),系統已停止工作。
系統分為三個部分,分別為空間段、地面段、用戶段:[46]
北斗衞星導航試驗系統於2000年能夠使用後,其定位精度100米,使用地面參照站校準後為20米,與當時的全球衞星定位系統民用碼相當。系統用戶能實現自身的定位,也能向外界報告自身位置和發送消息,授時精度20納秒,定位響應時間為1秒。[47][48]
由於是採用少量衞星實現的有源定位,該系統成本較低,但是系統在定位精度、用戶容量、定位的頻率次數、隱蔽性等方面均受到限制。另外該系統無測速功能,不能用於精確導引武器。[49]因而與可能的衝突中,使用正式系統乃是必要的,不能當作備用。
服務於亞太的北斗衞星導航系統也被稱為北斗二號,是中國的第二代衞星導航系統,「北斗衞星導航系統」英文簡稱BDS,曾用名COMPASS一詞。此衞星導航系統的發展目標是對全球提供無源定位,與全球定位系統相似。在計劃中,整個系統將由16顆衞星組成,其中6顆是靜止軌道衞星,以與使用靜止軌道衞星的北斗衞星導航試驗系統兼容。[50]其總設計師為孫家棟。項目的主要參與者為中國人民解放軍總參謀部、中國人民解放軍總裝備部、國家國防科技工業局、中國科學院、中國航天科技集團公司、中國電子科技集團公司、國防科技大學。[51]截至2012年,中國為試驗系統和覆蓋亞太的正式系統共花費了數百億人民幣,為了實現覆蓋全球的目標,還將投入四五百億以上。[52]
北斗三號是與二代北斗並存的衞星導航系統,其目的是逐漸升級對全球的覆蓋,預計在2020年前完成,為全球用戶提供定位、導航、授時服務,中國將發射大量的中地球軌道衞星,同時因為現有系統的衞星壽命也會到期,也將會在2020年前完成一部份的替換。[53][54]中國原計劃在2014年發射一顆試驗星,以驗證全球系統建設中的關鍵技術。[55][56]但實際到2015年才開始發射新一代衞星。[57][58][59]2020年6月23日,北斗三號最後一顆組網衞星發射成功[60]。2020年7月31日,北斗三號全球衞星導航系統建成開通[61]。
北斗衞星導航系統的建設於2004年啟動,2011年開始對中國和周邊提供測試服務,2012年12月27日起正式提供衞星導航服務,服務範圍涵蓋亞太大部分地區,南緯55度到北緯55度、東經55度到東經180度為一般服務範圍。[62]該導航系統提供兩種服務方式,即開放服務和授權服務。開放服務是在服務區免費提供定位、測速、授時服務,定位精度為25米,測速精度0.2米/秒,授時精度50納秒,在服務區的較邊緣地區精度稍差。授權服務則是向授權用戶提供更安全與更高精度的定位、測速、授時、通訊服務以及系統完好性資訊,這類用戶為中國軍隊和政府等。[63]由於該正式系統繼承了試驗系統的一些功能,能在亞太地區提供無源定位技術所不能完成的服務,如短報文通訊。
北斗衞星導航系統由空間段、地面段、用戶段組成。[35]
北斗衞星第三代導航系統空間段計劃由30顆衞星組成,包括3顆靜止軌道衞星、24顆中地球軌道衞星、3顆傾斜同步軌道衞星。[35]3顆靜止軌道衞星定點位置為東經80°、110.5°、140°,[35]中地球軌道衞星運行在3個軌道平面上,軌道平面之間為相隔120°均勻分佈。[64]
至2012年底北斗亞太區域導航正式開通時,已為正式的第二代北斗衞星導航系統發射了16顆衞星,[65]其中14顆組網並提供服務,分別為5顆靜止軌道衞星、5顆傾斜地球同步軌道衞星(均在傾角55°的軌道面上)、4顆中地球軌道衞星(均在傾角55°的軌道面上)。[66]
序號 | 衞星 | 發射日期 | 發射地點 | 火箭 | 偽隨機識別碼 | 運行軌道[a] | 使用狀況 | 狀態[b] |
---|---|---|---|---|---|---|---|---|
北斗二號 | ||||||||
1 | 北斗二號-M1 | 2007-04-14 | 西昌 | 長征三號甲 | N/A | 中地球軌道,高度21559×21518公里,傾角56.8° | 退役 | BEIDOU-2 M1(頁面存檔備份,存於互聯網檔案館) |
2 | 北斗二號-G2 | 2009-04-15[69] | 西昌 | 長征三號丙 | N/A | 亞地球同步軌道,高度36027×35539公里,傾角5.0° | 異常(衞星進入正確軌道,但之後地面未能獲得對衞星的控制,因此無法使用,衞星被遺棄。在近似地球靜止軌道的亞地球同步軌道上持續繞行,於赤道上空每日向東偏移約0.15°。[70][71]2022年1月22日, 實踐-21衞星將北斗二號-G2從地球同步軌道推入墓地軌道。[72]) | BEIDOU-2 G2(頁面存檔備份,存於互聯網檔案館) |
3 | 北斗二號-G1 | 2010-01-17[73] | 西昌 | 長征三號丙 | C01 | 地球靜止軌道140.0°E,高度35807×35782公里,傾角1.6° | 使用中 | BEIDOU-2 G1(頁面存檔備份,存於互聯網檔案館) |
4 | 北斗二號-G3 | 2010-06-02[74] | 西昌 | 長征三號丙 | N/A | 地球靜止軌道110.6°E,高度35809×35777公里,傾角1.3° | 退役(2018年9月29日) | BEIDOU-2 G3(頁面存檔備份,存於互聯網檔案館) |
5 | 北斗二號-IGSO1 | 2010-08-01[75] | 西昌 | 長征三號甲 | C06 | 傾斜地球同步軌道,高度35916×35669公里,傾角54.6° | 使用中 | BEIDOU-2 IGSO1(頁面存檔備份,存於互聯網檔案館) |
6 | 北斗二號-G4 | 2010-11-01[76] | 西昌 | 長征三號丙 | C04 | 地球靜止軌道159.98°E,高度35815×35772公里,傾角0.6° | 使用中 | BEIDOU-2 G4(頁面存檔備份,存於互聯網檔案館) |
7 | 北斗二號-IGSO2 | 2010-12-18 | 西昌 | 長征三號甲 | C07 | 傾斜地球同步軌道,高度35883×35691公里,傾角54.8° | 使用中 | BEIDOU-2 IGSO2(頁面存檔備份,存於互聯網檔案館) |
8 | 北斗二號-IGSO3 | 2011-04-10 | 西昌 | 長征三號甲 | C08 | 傾斜地球同步軌道,高度35911×35690公里,傾角55.9° | 使用中 | BEIDOU-2 IGSO3(頁面存檔備份,存於互聯網檔案館) |
9 | 北斗二號-IGSO4 | 2011-07-27 | 西昌 | 長征三號甲 | C09 | 傾斜地球同步軌道,高度35879×35709公里,傾角54.9° | 使用中 | BEIDOU-2 IGSO4(頁面存檔備份,存於互聯網檔案館) |
10 | 北斗二號-IGSO5 | 2011-12-02[77] | 西昌 | 長征三號甲 | C10 | 傾斜地球同步軌道,高度35880×35710公里,傾角54.9° | 使用中 | BEIDOU-2 IGSO5(頁面存檔備份,存於互聯網檔案館) |
11 | 北斗二號-G5 | 2012-02-25[78] | 西昌 | 長征三號丙 | C05 | 地球靜止軌道58.71°E,高度35801×35786公里,傾角1.4° | 使用中 | BEIDOU-2 G5(頁面存檔備份,存於互聯網檔案館) |
12 | 北斗二號-M3 | 2012-04-30[79] | 西昌 | 長征三號乙 | C11 | 中地球軌道,高度21597×21472公里,傾角56.5° | 使用中 | BEIDOU-2 M3(頁面存檔備份,存於互聯網檔案館) |
13 | 北斗二號-M4 | C12 | 中地球軌道,高度21603×21466公里,傾角56.4° | 使用中 | BEIDOU-2 M4(頁面存檔備份,存於互聯網檔案館) | |||
14 | 北斗二號-M5 | 2012-09-19[80] | 西昌 | 長征三號乙 | N/A | 中地球軌道 ,高度21626×21439公里,傾角54.8° | 退役(2014年10月21日) | BEIDOU-2 M5(頁面存檔備份,存於互聯網檔案館) |
15 | 北斗二號-M6 | C14 | 中地球軌道 ,高度21599×21470公里,傾角54.9° | 使用中 | BEIDOU-2 M6(頁面存檔備份,存於互聯網檔案館) | |||
16 | 北斗二號-G6 | 2012-10-25 | 西昌 | 長征三號丙 | C02 | 地球靜止軌道84.07°E,高度35803×35783公里,傾角1.7° | 使用中 | BEIDOU-2 G6(頁面存檔備份,存於互聯網檔案館) |
17 | 北斗二號-IGSO6 | 2016-03-30[81] | 西昌 | 長征三號甲 | C13 | 傾斜地球同步軌道,高度35689.3×35894.5公里,傾角55.0° | 使用中 | BEIDOU-2 IGSO6(頁面存檔備份,存於互聯網檔案館) |
18 | 北斗二號-G7 | 2016-06-12[82] | 西昌 | 長征三號丙 | C03 | 地球靜止軌道110.45°E,高度35854.3×35885.9公里,傾角1.7° | 使用中 | BEIDOU-2 G7(頁面存檔備份,存於互聯網檔案館) |
19 | 北斗二號-IGSO7 | 2018-07-10[83] | 西昌 | 長征三號甲 | C16 | 傾斜地球同步軌道,高度35697.8×35881.7公里,傾角55.1° | 使用中 | BEIDOU-2 IGSO7(頁面存檔備份,存於互聯網檔案館) |
20 | 北斗二號-G8 | 2019-05-17[84] | 西昌 | 長征三號丙 | C18 | 地球靜止軌道144.55°E,高度35779.6×35806.3公里,傾角1.8° | 使用中 | BEIDOU-2 G8(頁面存檔備份,存於互聯網檔案館) |
北斗三號試驗系統 | ||||||||
1 | 北斗三號-IGSO1-S[c] | 2015-03-30[58] | 西昌 | 長征三號丙 | C31 | 傾斜地球同步軌道,高度35613.9×35975.8公里,傾角54.0° | 在軌試驗 | BEIDOU-3 IGSO1-S(頁面存檔備份,存於互聯網檔案館) |
2 | 北斗三號-M1-S | 2015-07-25[85] | 西昌 | 長征三號乙 | C57 | 中地球軌道,高度21520.7×21549.6公里,傾角55.7° | 在軌試驗 | BEIDOU-3 M1-S(頁面存檔備份,存於互聯網檔案館) |
3 | 北斗三號-M2-S | C58 | 中地球軌道,高度21517.6×21552.5公里,傾角55.7° | 在軌試驗 | BEIDOU-3 M2-S(頁面存檔備份,存於互聯網檔案館) | |||
4 | 北斗三號-IGSO2-S | 2015-09-30[86] | 西昌 | 長征三號乙 | C56 | 傾斜地球同步軌道,高度35614.2×35961.8公里,傾角55.0° | 在軌試驗 | BEIDOU-3 IGSO2-S(頁面存檔備份,存於互聯網檔案館) |
5 | 北斗三號-M3-S[c] | 2016-02-01[87] | 西昌 | 長征三號丙 | N/A | 中地球軌道,高度21530.6×21538.9公里,傾角55.0° | 在軌試驗 | BEIDOU-3 M3-S(頁面存檔備份,存於互聯網檔案館) |
北斗三號 | ||||||||
1 | 北斗三號-M1 | 2017-11-05[88] | 西昌 | 長征三號乙 | C19 | 中地球軌道,高度21500.6×21569.6公里,傾角55.0° | 使用中 | BEIDOU-3 M1(頁面存檔備份,存於互聯網檔案館) |
2 | 北斗三號-M2 | C20 | 中地球軌道,高度21502.0×21568.2公里,傾角55.0° | 使用中 | BEIDOU-3 M2(頁面存檔備份,存於互聯網檔案館) | |||
3 | 北斗三號-M3[c] | 2018-01-12[89] | 西昌 | 長征三號乙 | C21 | 中地球軌道,高度21521.2×21548.8公里,傾角55.1° | 使用中 | BEIDOU-3 M3(頁面存檔備份,存於互聯網檔案館) |
4 | 北斗三號-M4[c] | C22 | 中地球軌道,高度21528.0×21542.0公里,傾角55.1° | 使用中 | BEIDOU-3 M4(頁面存檔備份,存於互聯網檔案館) | |||
5 | 北斗三號-M5 | 2018-02-12[90] | 西昌 | 長征三號乙 | C23 | 中地球軌道,高度21509.0×21561.2公里,傾角55.0° | 使用中 | BEIDOU-3 M5(頁面存檔備份,存於互聯網檔案館) |
6 | 北斗三號-M6 | C24 | 中地球軌道,高度21504.5×21565.7公里,傾角55.0° | 使用中 | BEIDOU-3 M6(頁面存檔備份,存於互聯網檔案館) | |||
7 | 北斗三號-M7[c] | 2018-03-30[91] | 西昌 | 長征三號乙 | C27 | 中地球軌道,高度21533.2×21536.9公里,傾角55.1° | 使用中 | BEIDOU-3 M7(頁面存檔備份,存於互聯網檔案館) |
8 | 北斗三號-M8[c] | C28 | 中地球軌道,高度21522.7×21547.3公里,傾角55.1° | 使用中 | BEIDOU-3 M8(頁面存檔備份,存於互聯網檔案館) | |||
9 | 北斗三號-M9 | 2018-07-29[92] | 西昌 | 長征三號乙 | C29 | 中地球軌道,高度21517.1×21553.1公里,傾角55.0° | 使用中 | BEIDOU-3 M9(頁面存檔備份,存於互聯網檔案館) |
10 | 北斗三號-M10 | C30 | 中地球軌道,高度21524.3×21545.9公里,傾角55.0° | 使用中 | BEIDOU-3 M10(頁面存檔備份,存於互聯網檔案館) | |||
11 | 北斗三號-M11[c] | 2018-08-25[93] | 西昌 | 長征三號乙 | C25 | 中地球軌道,高度21519.8×21550.5公里,傾角55.0° | 使用中 | BEIDOU-3 M11(頁面存檔備份,存於互聯網檔案館) |
12 | 北斗三號-M12[c] | C26 | 中地球軌道,高度21525.8×21544.5公里,傾角55.0° | 使用中 | BEIDOU-3 M12(頁面存檔備份,存於互聯網檔案館) | |||
13 | 北斗三號-M13 | 2018-09-19[94] | 西昌 | 長征三號乙 | C32 | 中地球軌道,高度21521.3×21548.9公里,傾角55.0° | 使用中 | BEIDOU-3 M13(頁面存檔備份,存於互聯網檔案館) |
14 | 北斗三號-M14 | C33 | 中地球軌道,高度21521.7×21548.4公里,傾角55.0° | 使用中 | BEIDOU-3 M14(頁面存檔備份,存於互聯網檔案館) | |||
15 | 北斗三號-M15[c] | 2018-10-15[95] | 西昌 | 長征三號乙 | C34 | 中地球軌道,高度21516.7×21553.2公里,傾角55.0° | 使用中 | BEIDOU-3 M15(頁面存檔備份,存於互聯網檔案館) |
16 | 北斗三號-M16[c] | C35 | 中地球軌道,高度21521.5×21559.1公里,傾角55.0° | 使用中 | BEIDOU-3 M16(頁面存檔備份,存於互聯網檔案館) | |||
17 | 北斗三號-G1 | 2018-11-1 | 西昌 | 長征三號乙 | C59 | 地球靜止軌道144.51°E,高度35787.3×35802.3公里,傾角1.9° | 使用中 | BEIDOU-3 G1(頁面存檔備份,存於互聯網檔案館) |
18 | 北斗三號-M17 | 2018-11-19[96] | 西昌 | 長征三號乙 | C36 | 中地球軌道,高度21507.4×21562.6公里,傾角55.0° | 使用中 | BEIDOU-3 M17(頁面存檔備份,存於互聯網檔案館) |
19 | 北斗三號-M18 | C37 | 中地球軌道,高度21508.3×21561.3公里,傾角55.0° | 使用中 | BEIDOU-3 M18(頁面存檔備份,存於互聯網檔案館) | |||
20 | 北斗三號-IGSO1 | 2019-04-20 | 西昌 | 長征三號乙 | C38 | 傾斜地球同步軌道,高度35721.3×35857.4公里,傾角55.0° | 使用中 | BEIDOU-3 IGSO1(頁面存檔備份,存於互聯網檔案館) |
21 | 北斗三號-IGSO2 | 2019-06-25 | 西昌 | 長征三號乙 | C39 | 傾斜地球同步軌道,高度35737.8×35838.8公里,傾角55.0° | 使用中 | BEIDOU-3 IGSO2(頁面存檔備份,存於互聯網檔案館) |
22 | 北斗三號-M23 | 2019-09-23 | 西昌 | 長征三號乙 | C45 | 中地球軌道,高度21553.3×22115.5公里,傾角55.0° | 使用中 | BEIDOU-3 M23(頁面存檔備份,存於互聯網檔案館) |
23 | 北斗三號-M24 | C46 | 中地球軌道,高度21514.7×21555.5公里,傾角55.0° | 使用中 | BEIDOU-3 M24(頁面存檔備份,存於互聯網檔案館) | |||
24 | 北斗三號-IGSO3 | 2019-11-5 | 西昌 | 長征三號乙 | C40 | 傾斜地球同步軌道,高度35681.9×35894.8公里,傾角58.7° | 使用中 | BEIDOU-3 IGSO3(頁面存檔備份,存於互聯網檔案館) |
25 | 北斗三號-M21[c] | 2019-11-23 | 西昌 | 長征三號乙 | C43 | 中地球軌道,高度21537.4×22199.0公里,傾角55.0° | 使用中 | BEIDOU-3 M21(頁面存檔備份,存於互聯網檔案館) |
26 | 北斗三號-M22[c] | C44 | 中地球軌道,高度21544.1×22198.9公里,傾角55.0° | 使用中 | BEIDOU-3 M22(頁面存檔備份,存於互聯網檔案館) | |||
27 | 北斗三號-M19 | 2019-12-16 | 西昌 | 長征三號乙 | C41 | 中地球軌道,高度21498.1×21572.1公里,傾角55.0° | 使用中 | BEIDOU-3 M19(頁面存檔備份,存於互聯網檔案館) |
28 | 北斗三號-M20 | C42 | 中地球軌道,高度21538.4×22115.3公里,傾角55.0° | 使用中 | BEIDOU-3 M20(頁面存檔備份,存於互聯網檔案館) | |||
29 | 北斗三號-G2 | 2020-03-09 | 西昌 | 長征三號乙 | C60 | 地球靜止軌道80.09°E,高度35782.3×35805.7公里,傾角3.0°[d] | 使用中 | BEIDOU-3 G2(頁面存檔備份,存於互聯網檔案館) |
30 | 北斗三號-G3 | 2020-06-23 | 西昌 | 長征三號乙 | C61 | 地球靜止軌道110.53°E,高度35765.3×35819.1公里,傾角3.0° | 在軌測試[98][99] | BEIDOU-3 G3(頁面存檔備份,存於互聯網檔案館) |
系統的地面段由主控站、注入站、監測站組成。[35]
用戶段即用戶的終端,即可以是專用於北斗衞星導航系統的訊號接收機,也可以是同時兼容其他衞星導航系統的接收機。[35]接收機需要捕獲並跟蹤衞星的訊號,根據數據按一定的方式進行定位計算,最終得到用戶的經緯度、高度、速度、時間等資訊。[100]
在空間中若已經確定A、B、C三點的空間位置,且第四點D到上述三點的距離皆已知的情況下,即可以確定D的空間位置,原理如下:因為A點位置和AD間距離已知,可以推算出D點一定位於以A為圓心、AD為半徑的圓球表面,按照此方法又可以得到以B、C為圓心的另兩個圓球,即D點一定在這三個圓球的交匯點上,即三球交匯定位。北斗的試驗系統和正式系統的定位都依靠此原理。
當衞星導航系統使用有源時間測距來定位時,用戶終端通過導航衞星向地面控制中心發出一個申請定位的訊號,之後地面控制中心發出測距訊號,根據訊號傳輸的時間得到用戶與兩顆衞星的距離。[101]除了這些資訊外,地面控制中心還有一個數據庫,為地球表面各點至地球球心的距離,當認定用戶也在此不均勻球面的表面時,三球交匯定位的條件已經全部滿足,控制中心可以計算出用戶的位置,並將資訊發送到用戶的終端。北斗的試驗系統完全基於此技術,而之後的北斗衞星導航系統除了使用新的技術外,也保留了這項技術。
當衞星導航系統使用無源時間測距技術時,用戶接收至少4顆導航衞星發出的訊號,根據時間資訊可獲得距離資訊,根據三球交匯的原理,用戶終端自行可以自行計算其空間位置。[101]此即為GPS所使用的技術,北斗衞星導航系統也使用了此技術來實現全球的衞星定位。
參照三球交匯定位的原理,根據3顆衞星到用戶終端的距離資訊,根據三維的距離公式,就依靠列出3個方程得到用戶終端的位置資訊,即理論上使用3顆衞星就可達成無源定位,但由於衞星時鐘和用戶終端使用的時鐘間一般會有誤差,而電磁波以光速傳播,微小的時間誤差將會使得距離資訊出現巨大失真,實際上應當認為時鐘差距不是0而是一個未知數t,如此方程中就有4個未知數,即客戶端的三位坐標(X,Y,Z),以及時鐘差距t,故需要4顆衞星來列出4個關於距離的方程式,最後才能求得答案,即用戶端所在的三維位置,根據此三維位置可以進一步換算為經緯度和海拔高度。[102][103]
若空中有足夠的衞星,用戶終端可以接收多於4顆衞星的資訊時,可以將衞星每組4顆分為多個組,列出多組方程,後通過一定的算法挑選誤差最小的那組結果,能夠提高精度。[102]
電磁波以30萬公里/秒的光速傳播,在測量衞星距離時,若衛星鐘有一納秒(十億分之一秒)時間誤差,會產生三十厘米距離誤差。儘管衞星採用的是非常精確的原子鐘,也會累積較大誤差,因此地面工作站會監視衞星時鐘,並將結果與地面上更大規模的更精確的原子鐘比較,得到誤差的修正資訊,最終用戶通過接收機可以得到經過修正後的更精確的資訊。當前有代表性的衞星用原子鐘大約有數納秒的累積誤差,產生大約一米的距離誤差。[104]
為提高定位精度,還可使用差分技術。在地面上建立基準站,將其已知的精確坐標與通過導航系統給出的坐標相比較,可以得出修正數,對外發佈,用戶終端依靠此修正數,可以將自己的導航系統計算結果進行再次的修正,從而提高精度。例如,全球定位系統使用差分全球定位系統後,定位精度可達到5米左右。 [102]
在北斗衞星導航系統中,能使用無源時間測距技術為全球提供無線電衞星導航服務(RNSS),也同時也保留了試驗系統中的有源時間測距技術,即提供無線電衞星測定服務(RDSS),但僅在亞太地區實現。從衞星所起到的功能來區分,可以分成下列兩類:[105]
北斗衞星導航系統同時使用靜止軌道與非靜止軌道衞星,對於亞太範圍內的區域導航來說,無需藉助中地球軌道衞星,只依靠北斗的地球靜止軌道衞星和傾斜地球同步軌道衞星即可保證服務性能。而數量龐大的中地球軌道衞星,主要服務於全球衞星導航系統。此外,如果傾斜地球同步軌道衞星發生故障,則中地球軌道衞星可以調整軌道予以接替,即作為備份星。[107]
截至2012年發射的北斗系統的衞星設計壽命都是8年,而後續又有數量眾多的中地球軌道衞星需要發射,這些衞星將採用專門的中地球軌道衞星平台,壽命將延長至12年或更多,還會往小型化發展。[64]
因為需要一定數量的衞星才能提供質量可靠的導航服務,從衞星的壽命方面考慮,若發射間隔過久,則後續衞星發射時,可能早期的衞星已近退役,所以北斗的衞星需要在短時間發射,中國在3年的時間內共發射了14顆北斗衞星,這是中國首次使用「一次設計,組批生產」的方式對衞星快速批量生產。[54]到2020年時,在2010年前後發射的衞星已經退役,因此在2012到2020年的8年時間裏,中國需要為準備覆蓋全球的北斗衞星導航系統再生產出30多顆衞星。[53]
中國在1981年就成功執行過「一箭多星」,不過此技術一般用於發射一顆大衞星附帶幾顆小衞星,將衞星送入不同的軌道。2012年使用「一箭雙星」發射北斗衞星,是中國首次用一枚火箭發射兩顆相同的大質量衞星,火箭將兩顆衞星送入了同一個軌道面上,其即衞星的運行軌跡相同,其差別在於軌位。[108]
北斗衞星導航系統的系統時間(BeiDou Navigation Satellite System Time) 叫做北斗時(BDT),屬於原子時,溯源到中國的協調世界時,與協調世界時的誤差在100納秒內,起算時間是協調世界時2006年1月1日0時0分0秒。[109]
北斗衞星導航系統使用碼分多址技術,與全球定位系統和伽利略定位系統一致,而不同於格洛納斯系統的頻分多址技術。兩者相比,碼分多址有更高的頻譜利用率,在由L波段的頻譜資源非常有限的情況下,選擇碼分多址是更妥當的方式。此外,碼分多址的抗干擾性能,以及與其他衞星導航系統的兼容性能更佳。[110]
北斗衞星導航系統的官方宣佈,在L波段和S波段發送導航訊號,在L波段的B1、B2、B3頻點上發送服務訊號,包括開放的訊號和需要授權的訊號。[35]
國際電信聯盟分配了E1(1590MHz)、E2(1561MHz)、E6(1269MHz)和E5B(1207MHz)四個波段給北斗衞星導航系統,這與伽利略定位系統使用或計劃使用的波段存在重合。然而,根據國際電信聯盟的頻段先佔先得政策,若北斗系統先行使用,即擁有使用相應頻段的優先權。[111]2007年,中國發射了北斗-M1,之後在相應波段上被檢測到訊號:1561.098MHz±2.046MHz, 1589.742MHz, 1207.14MHz±12MHz, 1268.52MHz±12MHz,以上波段與伽利略定位系統計劃使用的波段重合,與全球衞星定位系統的L波段也有小部分重合。[41][112]
北斗-M1是一個實驗性的衞星,用於發射訊號的測試和驗證,並能以先佔的原則確定對相應頻率的使用權。北斗-M1衞星在E2、E5B、E6頻段進行訊號傳輸,傳輸的訊號分成2類,分別被稱作「I」和「Q」。「I」的訊號具有較短的編碼,可能會被用來作開放服務(民用), 而「Q」部分的編碼更長,且有更強的抗干擾性,可能會被用作需要授權的服務(軍用)。在北斗-M1發射後,法國、美國等工程師即展開了對訊號的研究,[113][114]研究者包括在中國引起熱議的高杏欣,她和團隊分析出了北斗-M1衞星的民用碼頻道編碼方式並予以公開,但其研究內容與軍用碼的安全問題無關,事實上全球衞星定位系統和伽利略定位系統的民用碼也早已被破解。[115][116][117]
此章節需要擴充:車載終端強制安裝及收費;「破解」北斗民碼訊號 |
2021年4月,河北滄州一卡車司機在路過唐山市豐潤區超限站時,被以車載北斗終端掉線為由處以扣車和2000元罰款,該司機表示無法得知終端是否掉線,且或因無法接受處罰,此後服用農藥自殺身亡[118],事件引發社會關注[119]。《人民日報》等媒體報道事件時解釋強調,事件非北斗衞星故障,需堅決遏制商家以北斗系統之名炒作自家導航工具,不讓北斗衞星為「北斗產品」故障背鍋[120],並需加強定位裝置與平台的質量管控,完善相關處罰的行政複議機制、數據可視化[121],以及關愛貨車司機的心理健康狀況[119]。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.