要計算側錐球狀屋頂的頂點座標可以從球狀屋頂開始計算,然後再補上側錐多出來的頂點。邊長為2的球狀屋頂的頂點座標之計算可以先令k ≈ 0.85273為下列四次式的最小實根:

則邊長為2的球狀屋頂之頂點座標可以由下列頂點的軌道的並集在沿xz平面和yz平面鏡射所產生的空間對稱群之群作用下給出:[12]

最後計算其中一個正方形面的質心和該正方形面的法向量後,可以得出其最後一個頂點的位置為:

另一個角度的邊長為2的側錐球狀屋頂頂點座標也可以表示為:[6]





其中,
、
、
、
和
為下列方程式的實根:[6]





其中,
和
是同個方程式但不同實根。
可以表達為
。[6]
這些數值的近似值為:[6]
≈ 1.705453885692834
≈ 1.044713857367277
≈ 1.914399800381786
≈ 1.578855253321743
≈ 2.626590848527109