數學中,特別是算子理論中,每個內積空間中的線性算子 都個有一個對應的伴隨算子(英語:adjoint operator),記作 ,伴隨算子可由以下關係定義
算子 的伴隨 亦可稱作埃爾米特伴隨(英語:Hermitian adjoint),以夏爾·埃爾米特命名。在物理學,尤其是量子力學中,算子 的埃爾米特伴隨常被記作 (狄拉克符號記法)。
有界算子
假設H是一個希爾伯特空間,帶有內積 。考慮連續線性算子A : H → H(這與有界算子相同)。
A* : H → H具有如下性質:
- ,對所有。
這個算子A* 是A的伴隨。
性質
馬上可得的性質
- A** = A
- 如A可逆,則A* 也可逆,且 (A*)−1 = (A−1)*
- (A + B)* = A* + B*
- (λA)* = λ* A*,這裏λ* 表示複數λ的復共軛
- (AB)* = B* A*
如果我們定義A的算子範數為
則
而且有
- 。
希爾伯特空間H上有界線性算子與伴隨算子以及算子範數給出一個C*代數例子。
- 。
第一個等式的證明:
第二個等式由第一個推出,於兩邊取正交空間即可。注意到一般地,像未必是閉的,但連續算子的核總是閉的。
埃爾米特算子
有界算子A: H → H稱為埃爾米特或自伴如果
- A = A*
這等價於
- 。
在某種意義下,這種算子起着實數(等於他們的復共軛)的作用。他們在量子力學中作為實值可觀測量的模型。更多細節參見自伴算子一文。
無界算子的伴隨
其他伴隨
範疇論中,方程
形式上類似地定義了伴隨函子偶性質,這也是伴隨函子得名之由來。
又見
參考文獻
- Walter Rudin. Functional Analysis(2nd ed.), China Machine Press, 2006
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.