在泛函分析中有多個有名的定理冠以里斯表示定理(英語:Riesz representation theorem),它們是為了紀念匈牙利數學家弗里傑什·里斯。
歷史上,通常認為這個定理同時由里斯和弗雷歇發現[1]
意為由所有支集為緊的連續函數 所構成的函數空間。
定理: 是局部緊的郝斯多夫空間 ,則對正線性泛函 ,存在一個含有所有 的博雷爾集的Σ-代數 ,且存在唯一的測度 使得[2]
且(以下的條件稱為正則的)
- 對所有 的緊子集 ,。
- 若 ,則
- 若 且 ,則
- 若 為 的開集,則
- M. Fréchet (1907). Sur les ensembles de fonctions et les opérations linéaires. C. R. Acad. Sci. Paris 144, 1414–1416.
- F. Riesz (1907). Sur une espèce de géométrie analytiques des systèmes de fonctions sommables. C. R. Acad. Sci. Paris 144, 1409–1411.
- F. Riesz (1909). Sur les opérations fonctionelles linéaires. C. R. Acad. Sci. Paris 149, 974–977.
- J. D. Gray, The shaping of the Riesz representation theorem: A chapter in the history of analysis, Archive for History in the Exact Sciences, Vol 31(3) 1984-85, 127-187.
- P. Halmos Measure Theory, D. van Nostrand and Co., 1950.
- P. Halmos, A Hilbert Space Problem Book, Springer, New York 1982 (problem 3 contains version for vector spaces with coordinate systems).
- D. G. Hartig, The Riesz representation theorem revisited, American Mathematical Monthly, 90(4), 277-280 (A category theoretic presentation as natural transformation).
- Walter Rudin, Real and Complex Analysis, McGraw-Hill, 1966, ISBN 0-07-100276-6.
- 埃里克·韋斯坦因. Riesz Representation Theorem. MathWorld.
- Proof of Riesz representation theorem for separable Hilbert spaces. PlanetMath.