在化學與原子物理學中,π軌域(英語:π orbital)是一種分子軌域。是形成π鍵後所產生的分子軌域。π軌域是一種由軌域並肩重疊後所形成的新軌域。
![Thumb](http://upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Ethylene-HOMO-Spartan-3D-balls.png/640px-Ethylene-HOMO-Spartan-3D-balls.png)
結構
![Thumb](http://upload.wikimedia.org/wikipedia/commons/thumb/1/17/Benzene-HOMO-minus-4-solid-3D-balls.png/640px-Benzene-HOMO-minus-4-solid-3D-balls.png)
π軌域是一種由軌域並肩重疊後所形成的分子軌域,除了s軌域無法形成π軌域,之外,大部分的軌域都可以形成π軌域,較常是由兩個pz軌域所形成,但實際上只要方向對了,無論是px或py都能形成π軌域。
π軌域可以有很多形狀,但都不與核軸成旋轉對稱,其形狀取決於他所形成的π鍵,例如:有共振時,π軌域就會變得較大較狹長,若是環狀的共振,則其π軌域呈環形。其能容納的電子數量也由其所形成的π鍵來決定,如乙烯內所形成的π軌域可容納下2個電子,而苯的π軌域呈環狀,可容下6個電子,這是因為共振使電子均勻分佈而導致。
此外,在形成化學建的過程中,未混成的軌域有可能形成π軌域,如乙烯,碳上形成了sp2混成軌域,而未混成的p軌域則形成π軌域。
軌域能級
![Thumb](http://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Butadiene-pi-MOs-Spartan-3D-balls.png/640px-Butadiene-pi-MOs-Spartan-3D-balls.png)
根據休克爾方法,可得出不同能量的π軌域,不同能級的π軌域形狀不盡相同,電子會先從能量低的π軌域開始填入,例如丁二烯[1][2],其不同能級π軌域能量如下:
- π4: +7.71713 eV
- π3: +3.16186 eV (LUMO)
- π2: −8.66624 eV (HOMO)
- π1: −12.10962 eV
其電子會先從π1軌域開始填入,然後才填π2軌域,根原子軌域一樣,一種形狀只能填2個電子,且自旋互為相反數,因此整個π軌域,π3軌域和π4軌域兩個能級是空的,但要注意:此處的能級(繁體:能級)並非是電子殼層的能階(繁體:能階)。
π*軌域
π*軌域是π軌域的反鍵軌域,當核間軸發生旋轉時會產生相位的變化。π*軌域類似於σ*軌域,在原子核之間也有一個波節。[3][4][5][6]
π鍵
參見
參考文獻
Wikiwand - on
Seamless Wikipedia browsing. On steroids.