線性代數中,初等矩陣(又稱為基本矩陣[1])是一個與單位矩陣只有微小區別的矩陣。具體來說,一個 n 階單位矩陣 E 經過一次初等行轉換或一次初等列轉換所得矩陣稱為 n 階初等矩陣。[2]
Quick Facts 線性代數, 向量 ...
線性代數
|
|
向量 · 向量空間 · 基底 · 行列式 · 矩陣
|
|
|
Close
此轉換 Ti j 將單位矩陣的第 i 列的所有元素與第 j 列互換。
- 逆矩陣即自身:。
- 因為單位矩陣的行列式為1,故 。對所有階數相同的方陣 A 亦有以下性質:。
此轉換 Ti(m) 將第 i 列的所有元素乘以一個非零常數 m。
- 逆矩陣為 。
- 此矩陣及其逆矩陣均為對角矩陣。
- 其行列式 ,故對所有階數相同的方陣 A 都有 。
此轉換 Ti j(m) 將第 i 列加上第 j 列的 m 倍,其中 m 為第 i 行第 j 列的元素。
- 逆矩陣具有性質 。
- 此矩陣及其逆矩陣均為三角矩陣。
- 其行列式 ,故對所有階數相同的方陣 A 有 。
初等行轉換不影響線性方程組的解,也可用於高斯消元法,用於逐漸將系數矩陣化為標準形。初等列轉換不改變矩陣的核(故不改變解集),但改變了矩陣的像。反過來,初等行轉換沒有改變像卻改變了核。
有的時候,當矩陣的階數比較高的時候,使用其行列式的值和伴隨矩陣求解其逆矩陣會產生較大的計算量。這時,通常使用將原矩陣和相同列行數的單位矩陣並排,再使用初等轉換的方法將這個並排矩陣的左邊化為單位矩陣,這時,右邊的矩陣即為原矩陣的逆矩陣[3]。
- Axler, Sheldon Jay, Linear Algebra Done Right 2nd, Springer-Verlag, 1997, ISBN 0387982590
- Lay, David C., Linear Algebra and Its Applications 3rd, Addison Wesley, August 22, 2005, ISBN 978-0321287137
- Meyer, Carl D., Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), February 15, 2001 [2010-07-02], ISBN 978-0898714548, (原始內容存檔於2001-03-01)
- Poole, David, Linear Algebra: A Modern Introduction 2nd, Brooks/Cole, 2006, ISBN 0-534-99845-3
- Anton, Howard, Elementary Linear Algebra (Applications Version) 9th, Wiley International, 2005
- Leon, Steven J., Linear Algebra With Applications 7th, Pearson Prentice Hall, 2006