月球資源
来自维基百科,自由的百科全书
月球上有大量的自然資源,將來可以被開發並利用。[1][2]潛在的月球資源可能包括可加工的材料,如揮發物和礦物,以及地質結構,如熔岩管,這些材料加在一起,可能使月球殖民成為可能。利用月球上的資源可能提供一種手段,以減少月球探測和其他方面的成本和風險。[3][4]


從軌道和樣品返回任務中獲得的關於月球資源的見解,極大地提高了對月球原地資源利用(ISRU)潛力的認識,但這種認識還不足以完全證明為實施基於原地資源利用的活動而投入大量財政資源的合理性。[5]對資源可用性的確定將推動對人類定居地點的選擇。[6][7]
概述
月球資源可以促進對月球本身的繼續探索,促進地球和月球附近的科學和經濟活動(所謂的月球空間),或者它們可以被進口到地球表面,直接為全球經濟作出貢獻。[1]風化層(月球土壤)是最容易獲得的資源;它可以提供輻射和微流星體保護,也可以通過熔化提供建築和鋪路材料。[8]來自月球風化層氧化物的氧氣可以作為代謝氧氣和火箭推進劑氧化劑的來源。水冰可以為輻射防護、生命保障系統、氧氣和火箭推進劑原料提供水。來自永夜坑的揮發物可提供甲烷(CH
4)、氨(NH
3)、二氧化碳(CO
2)和一氧化碳(CO)[9]當地工業所需的金屬和其他元素可以從在岩漿中發現的各種礦物中獲取。
已知月球上的碳和氮含量很低,而金屬和原子氧含量豐富,但它們的分布和濃度仍是未知。進一步的月球探測將發現更多的經濟上有用的材料的濃度,而這些材料是否能在經濟上得到開發,將取決於對它們的價值以及支持其提取的能源和基礎設施的情況。[10] 為了使原地資源利用(ISRU)在月球上成功應用,着陸點的選擇以及確定合適的表面操作和技術是當務之急。
一些空間機構正在從月球軌道進行偵察,着陸器和漫遊器正在原地偵察資源和集中地(見:月球探測任務列表)
資源
太陽能、氧氣和金屬是月球上豐富的資源。[12]已知存在於月球表面的元素包括,除其他外,氫(H)、[1][13]氧(O)硅(Si)、鐵(Fe)、鎂(Mg)、鈣(Ca)、鋁(Al)、錳(Mn)和鈦(Ti)其中更豐富的是氧氣、鐵和硅。按重量計算,風化層中的原子氧含量估計為45%。[14][15]
阿波羅17號月球大氣成分實驗 (LACE) 的研究表明,月球大氣層含有微量的氫 (H2)、氦 (He)、氬 (Ar),還可能有氨 (NH3)、二氧化碳 (CO2) 和甲烷 (CH4)。 有幾個過程可以解釋月球上痕量氣體的存在:高能光子或太陽風與月球表面物質的反應、月球風化層的蒸發、彗星和流星體的物質沉積,以及月球內部的釋氣。然而這些都是濃度很低的痕量氣體。[16]月球外逸層的總質量約為 25,000公斤(55,000英磅),表面壓力為 3×10−15 巴(2×10−12 托)[17] 痕量氣體不太可能對原地資源利用有幫助。
月球上的日光大約持續兩周,隨後是大約兩周的夜晚,而月球兩極幾乎一直被照亮。[18][19][20]月球南極的特點是,該地區的環形山邊緣幾乎一直暴露在太陽光下,但環形山的內部卻長期遮擋着陽光,並在其內部保留着大量的月球水。[21]通過將月球資源處理設施置月球南極附近,太陽能產生的電力將允許在靠近月球水源的地方持續運行。[19][20]
太陽能電板可以直接在月球土壤上製造,由一個中等大小(約200 kg)的漫遊車來完成,該漫遊車有能力加熱石膏,直接在石膏基板上蒸發適當的半導體材料用於太陽能電板結構,並沉積金屬觸點和互連,直接在地面完成完整的太陽能電板陣列。[22]然而,這個過程需要從地球進口氟化鉀,以從風化層中提純必要的材料。[23]
正在開發的千瓦級核裂變系統用於可靠的發電,可以在月球、火星等其他星球上建立載人基地。[24][25]該系統非常適合月球和火星上陽光發電時斷時續的未開發星球。[25][26]月球上同時存在鈾和釷兩種元素,但是由於核燃料的能量密度很高,從地球上進口合適的燃料可能比在原地生產更實惠。
放射性同位素熱電發電機(RTG)是另一種形式的核能,它利用放射性同位素的自然衰變,而不是其誘導裂變。它已經在太空中使用了幾十年,包括在月球上。通常的過程是從地球上獲取合適的物質,但如果有乏核燃料等原料(從地球上運來加工或由當地裂變反應堆生產),鈈-238或鍶-90也可以在月球上生產。這些RTG可以用來提供獨立於太陽光的電力,用於月球和非月球應用。確實含有有害的有毒和放射性材料,這導致人們擔心在發生事故時這些材料會被無意中傳播。由於對輻射危險的高估,一般公眾的抗議往往集中在淘汰RTG上(而推薦替代電源)。
一個更理論化的月球資源是用於核聚變的潛在燃料。氦-3受到了媒體的特別關注,因為它在月球岩石中的豐度比地球上高。然而,迄今為止,核聚變還沒有被人類以可控的方式使用,釋放出淨可用的能量(像fusor這樣的設備是淨能量消耗者,而氫彈不是一個可控的聚變反應)。雖然氦-3是核聚變的一種可能途徑,但其他途徑則依賴於在地球上更容易獲得的核元素,如氚、鋰或氘。
在風化層中的元素氧含量估計為45%(重量)。[15][14]氧氣經常以氧化鐵的形式出現在富含鐵的月球礦物和玻璃中。這種月球礦物和玻璃包括鈦鐵礦、橄欖石、輝石、撞擊玻璃和火山玻璃。[27]氧的各種同位素以16O、17O和18O的形式存在於月球上。[28]
科學家們已經描述了至少20種從月球風化層中提取氧氣的不同可能過程,[29][30]並且都需要高能量輸入:2-4兆瓦的能量(即6-12×1013焦耳)來生產1000噸氧氣。[1]雖然從金屬氧化物中提取氧氣也會產生有用的金屬,但使用水作為原料並不生產。[1]從月球土壤中產生氧氣的一種可能方法需要兩個步驟。第一步使用氫氣 (H2) 還原氧化鐵以形成元素鐵 (Fe) 和水 (H2O)[27]然後,水可以通過電解產生氧氣,可以在低溫下液化儲存。氧氣的釋放量取決於月球礦物和玻璃中的氧化鐵豐富含量。從月球土壤中生產氧氣是一個相對較快的過程,在幾十分鐘內就能完成。相比之下,從月球玻璃中提取氧氣需要幾個小時。[27]

來自幾個軌道器的累積證據強烈表明,月球兩極的表面都存在水冰,但主要是在南極地區。[31][32] 然而,這些資料集的結果並不總是相互關聯的。 [33][34] 據確定,永久陰影月面的累積面積在北半球為 13,361 平方公里,在南半球為 17,698 平方公里,總面積為 31,059 平方公里。目前尚不清楚任何或所有這些永久陰影區域含有水冰和其他揮發物的程度,因此需要更多關於月球冰沉積物、其分佈、濃度、數量、配置、深度、岩土特性和任何其他特徵的數據設計和開發提取和加工系統所必需的。[34][35]
月球表面面向月球兩極的斜坡顯示出較高濃度的氫氣。 這是因為面向兩極的斜坡較少暴露在陽光下,導致氫氣蒸發。 此外,靠近月球兩極的斜坡顯示出較高的氫濃度,約為 45 ppmw。 有多種理論可以解釋月球上氫的存在。 含有氫的水可能是由彗星和小行星沉積在月球上的。此外,太陽風與月球表面化合物的相互作用可能導致羥基和水等含氫化合物的形成[36]。 太陽風將質子注入風化層,形成質子化原子,它是氫 (H) 的化合物。 儘管束縛氫大量存在,但有多少束縛氫擴散到地下、逃逸到太空或擴散到冷阱中仍然存在疑問。 推進劑生產需要氫氣,它有多種工業用途。 例如,氫氣可用於透過氫還原鈦鐵礦生產氧氣。[37][38][39]
參見
參考文獻
Wikiwand - on
Seamless Wikipedia browsing. On steroids.