1953年,威廉·馮·艾格斯多林(英語:William von Eggers Doering)和埃德溫·多爾夫曼通過氧-18標記的二苯基甲酮進行Baeyer-Villiger氧化反應,闡明了該反應的機理[15]。三種不同的機理理論上分別會得到不同位置的同位素標記產物:克里格中間體的標記僅出現在羰基氧上、過氧化物中間體的標記僅出現在酯結構的烷氧基上、過氧化酮中間體的標記同時會出現在上述二者位置(產物比例為1:1)[15]。標記實驗的結果是只觀察到符合克里格中間體的產物,因此該路線也成為現今普遍認可的反應機理[1]。
由於反應中使用了過氧化物,因此會將不希望氧化的基團一併氧化。例如,底物中的烯烴(特別是富電子時)和胺,可能被氧化成環氧化合物[21]。不過,已經有研究提出了保護官能團的方法,例如1962年,G. B. Payne在硒催化劑存在時使用過氧化氫將烯基酮氧化成環氧結構,而使用過氧乙酸則得到了酯結構[22]。
Crudden, Cathleen M.; Chen, Austin C.; Calhoun, Larry A. A Demonstration of the Primary Stereoelectronic Effect in the Baeyer-Villiger Oxidation of α-Fluorocyclohexanones. Angew. Chem. Int. Ed. 2000, 39 (16): 2851–2855. doi:10.1002/1521-3773(20000818)39:16<2851::aid-anie2851>3.0.co;2-y.
Yamabe, Shinichi. The Role of Hydrogen Bonds in Baeyer−Villiger Reactions. The Journal of Organic Chemistry. 2007, 72 (8): 3031–3041. PMID 17367197. doi:10.1021/jo0626562.
ten Brink, G.-J.; Arends, W. C. E.; Sheldon, R. A. The Baeyer-Villiger Reaction: New Developments toward Greener Procedures. Chem. Rev. 2004, 104 (9): 4105–4123. PMID 15352787. doi:10.1021/cr030011l.
Hawthorne, M. Frederick; Emmons, William D.; McCallum, K. S. A Re-examination of the Peroxyacid Cleavage of Ketones. I. Relative Migratory Aptitudes. J. Am. Chem. Soc. 1958, 80 (23): 6393–6398. doi:10.1021/ja01556a057.
Doering, W. von E.; Dorfman, Edwin. Mechanism of the Peracid Ketone-Ester Conversion. Analysis of Organic Compounds for Oxygen-18. J. Am. Chem. Soc. 1953, 75 (22): 5595–5598. doi:10.1021/ja01118a035.
Doering, W. von E.; Speers, Louise. The Peracetic Acid Cleavage of Unsymmetrical Ketones. Journal of the American Chemical Society. 1950, 72 (12): 5515–5518. doi:10.1021/ja01168a041.
Gallagher, T. F.; Kritchevsky, Theodore H. Perbenzoic Acid Oxidation of 20-Ketosteroids and the Stereochemistry of C-17. J. Am. Chem. Soc. 1950, 72 (2): 882–885. doi:10.1021/ja01158a062.
Payne, G. B. A Simplified Procedure for Epoxidation by Benzonitrile-Hydrogen Peroxide. Selective Oxidation of 2-Allylcyclohexanone. Tetrahedron. 1962, 18 (6): 763–765. doi:10.1016/S0040-4020(01)92726-7.
ten Brink, Gerd-Jan; Vis, Jan-Martijn; Arends, Isabel W. C. E.; Sheldon, Roger A. Selenium-Catalyzed Oxidations with Aqueous Hydrogen Peroxide. 2. Baeyer−Villiger Reactions in Homogeneous Solution. J. Org. Chem. 2001, 66 (7): 2429–2433. PMID 11281784. doi:10.1021/jo0057710.
LIU Yujia; XIA Changjiu; LIN Min; ZHU Bin; PENG Xinxin; LUO Yibin; SHU Xingtian. Stannosilicate molecular sieve: a new star in heteroatom incorporated zeolite family 39 (2): 605–615. 2020.
Ferrini, Paola; Dijkmans, Jan; Clercq, Rik De; Vyver, Stijn Van de; Dusselier, Michiel; Jacobs, Pierre A.; Sels, Bert F. Lewis acid catalysis on single site Sn centers incorporated into silica hosts. Coordination Chemistry Reviews. 2017, 343: 220–255. doi:10.1016/j.ccr.2017.05.010.
Polyak, Iakov; Reetz, Manfred T.; Thiel, Walter. Quantum Mechanical/Molecular Mechanical Study on the Mechanism of the Enzymatic Baeyer–Villiger Reaction. Journal of the American Chemical Society. 8 February 2012, 134 (5): 2732–2741. ISSN 0002-7863. PMID 22239272. doi:10.1021/ja2103839.
Fürst, Maximilian J. L. J.; Gran-Scheuch, Alejandro; Aalbers, Friso S.; Fraaije, Marco W. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catalysis. 6 December 2019, 9 (12): 11207–11241. doi:10.1021/acscatal.9b03396.
Kane, Vinayak V.; Doyle, Donald L. Total Synthesis of (±) Zoapatanol: A Stereospecific Synthesis of a Key Intermediate. Tetrahedron Lett. 1981, 22 (32): 3027–3030. doi:10.1016/S0040-4039(01)81818-9.