{"statusCode":200,"headers":{"vary":"RSC, Next-Router-State-Tree, Next-Router-Prefetch","link":"; rel=preload; as=\"font\"; crossorigin=\"\"; type=\"font/woff2\", ; rel=preload; as=\"font\"; crossorigin=\"\"; type=\"font/woff2\", ; rel=preload; as=\"font\"; crossorigin=\"\"; type=\"font/woff2\", ; rel=preload; as=\"font\"; crossorigin=\"\"; type=\"font/woff2\"","x-powered-by":"Next.js","cache-control":"private, no-cache, no-store, max-age=0, must-revalidate","content-type":"text/html; charset=utf-8","x-middleware-next":"1","x-opennext":"1"},"body":"马尔可夫性质 - Wikiwand
AI tools
Loading AI tools

馬爾可夫性質(英語:Markov property)是概率論中的一個概念,因為俄國數學家安德雷·馬可夫得名[1]。當一個隨機過程在給定現在狀態及所有過去狀態情況下,其未來狀態的條件概率分布僅依賴於當前狀態;換句話說,在給定現在狀態時,它與過去狀態(即該過程的歷史路徑)是條件獨立的,那麼此隨機過程即具有馬爾可夫性質。具有馬爾可夫性質的過程通常稱之為馬爾可夫過程。\n

\n

數學上,如果0}\">\n \n \n \n X\n (\n t\n )\n ,\n t\n >\n 0\n \n \n {\\displaystyle X(t),t>0}\n \n\"{\\displaystyle0}\">為一個隨機過程,則馬爾可夫性質就是指\n

\n
0.}\">\n \n \n \n \n P\n r\n \n \n \n [\n \n \n X\n (\n t\n +\n h\n )\n =\n y\n \n \n |\n \n \n X\n (\n s\n )\n =\n x\n (\n s\n )\n ,\n s\n \n t\n \n \n ]\n \n \n =\n \n P\n r\n \n \n \n [\n \n \n X\n (\n t\n +\n h\n )\n =\n y\n \n \n |\n \n \n X\n (\n t\n )\n =\n x\n (\n t\n )\n \n \n ]\n \n \n ,\n \n \n h\n >\n 0.\n \n \n {\\displaystyle \\mathrm {Pr} {\\big [}X(t+h)=y\\,|\\,X(s)=x(s),s\\leq t{\\big ]}=\\mathrm {Pr} {\\big [}X(t+h)=y\\,|\\,X(t)=x(t){\\big ]},\\quad \\forall h>0.}\n \n\"{\\displaystyle0.}\">
\n

馬爾可夫過程通常稱其為(時間)齊次,如果滿足\n

\n
0,}\">\n \n \n \n \n P\n r\n \n \n \n [\n \n \n X\n (\n t\n +\n h\n )\n =\n y\n \n \n |\n \n \n X\n (\n t\n )\n =\n x\n (\n t\n )\n \n \n ]\n \n \n =\n \n P\n r\n \n \n \n [\n \n \n X\n (\n h\n )\n =\n y\n \n \n |\n \n \n X\n (\n 0\n )\n =\n x\n (\n 0\n )\n \n \n ]\n \n \n ,\n \n \n t\n ,\n h\n >\n 0\n ,\n \n \n {\\displaystyle \\mathrm {Pr} {\\big [}X(t+h)=y\\,|\\,X(t)=x(t){\\big ]}=\\mathrm {Pr} {\\big [}X(h)=y\\,|\\,X(0)=x(0){\\big ]},\\quad \\forall t,h>0,}\n \n\"{\\displaystyle0,}\">
\n

除此之外則被稱為是(時間)非齊次的。齊次馬爾可夫過程通常比非齊次的簡單,構成了最重要的一類馬爾可夫過程。\n

某些情況下,明顯的非馬爾可夫過程也可以通過擴展「現在」和「未來」狀態的概念來構造一個馬爾可夫表示。設\n \n \n \n X\n \n \n {\\displaystyle X}\n \n\"{\\displaystyle為一個非馬爾可夫過程。我們就可以定義一個新的過程\n \n \n \n Y\n \n \n {\\displaystyle Y}\n \n\"{\\displaystyle,使得每一個\n \n \n \n Y\n \n \n {\\displaystyle Y}\n \n\"{\\displaystyle的狀態表示\n \n \n \n X\n \n \n {\\displaystyle X}\n \n\"{\\displaystyle的一個時間區間上的狀態,用數學方法來表示,即,\n

\n
\n \n \n \n Y\n (\n t\n )\n =\n \n \n {\n \n \n X\n (\n s\n )\n :\n s\n \n [\n a\n (\n t\n )\n ,\n b\n (\n t\n )\n ]\n \n \n \n }\n \n \n .\n \n \n {\\displaystyle Y(t)={\\big \\{}X(s):s\\in [a(t),b(t)]\\,{\\big \\}}.}\n \n\"{\\displaystyle
\n

如果\n \n \n \n Y\n \n \n {\\displaystyle Y}\n \n\"{\\displaystyle具有馬爾可夫性質,則它就是\n \n \n \n X\n \n \n {\\displaystyle X}\n \n\"{\\displaystyle的一個馬爾可夫表示。\n在這個情況下,\n \n \n \n X\n \n \n {\\displaystyle X}\n \n\"{\\displaystyle也可以被稱為是二階馬爾可夫過程更高階馬爾可夫過程也可類似地來定義。\n

具有馬爾可夫表示的非馬爾可夫過程的例子,例如有移動平均時間序列。\n

最有名的馬爾可夫過程為馬爾可夫鏈,但不少其他的過程,包括布朗運動也是馬爾可夫過程。\n

\n

相關條目

\n\n

參考文獻

\n\n\n\n\n\n
\n
    \n
  1. Markov, A. A. (1954). Theory of Algorithms. [Translated by Jacques J. Schorr-Kon and PST staff] Imprint Moscow, Academy of Sciences of the USSR, 1954 [Jerusalem, Israel Program for Scientific Translations, 1961; available from Office of Technical Services, United States Department of Commerce] Added t.p. in Russian Translation of Works of the Mathematical Institute, Academy of Sciences of the USSR, v. 42. Original title: Teoriya algorifmov. [QA248.M2943 Dartmouth College library. U.S. Dept. of Commerce, Office of Technical Services, number OTS 60-51085.]
  2. \n

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.

","isBase64Encoded":false}