數學上的阿貝爾多項式(Abel polynomial)是一個多項式序列,其第n項的形式為 p n ( x ) = x ( x − a n ) n − 1 . {\displaystyle p_{n}(x)=x(x-an)^{n-1}.} 該序列以挪威數學家阿貝爾(1802-1829)的名字來命名。 這個多項式為二項型。 例子 當 a = 1 {\displaystyle a=1} 時,此多項式為(OEIS數列A137452) p 0 ( x ) = 1 ; {\displaystyle p_{0}(x)=1;} p 1 ( x ) = x ; {\displaystyle p_{1}(x)=x;} p 2 ( x ) = − 2 x + x 2 ; {\displaystyle p_{2}(x)=-2x+x^{2};} p 3 ( x ) = 9 x − 6 x 2 + x 3 ; {\displaystyle p_{3}(x)=9x-6x^{2}+x^{3};} p 4 ( x ) = − 64 x + 48 x 2 − 12 x 3 + x 4 ; {\displaystyle p_{4}(x)=-64x+48x^{2}-12x^{3}+x^{4};} 當 a = 1 {\displaystyle a=1} ,此多項式為 p 0 ( x ) = 1 ; {\displaystyle p_{0}(x)=1;} p 1 ( x ) = x ; {\displaystyle p_{1}(x)=x;} p 2 ( x ) = − 4 x + x 2 ; {\displaystyle p_{2}(x)=-4x+x^{2};} p 3 ( x ) = 36 x − 12 x 2 + x 3 ; {\displaystyle p_{3}(x)=36x-12x^{2}+x^{3};} p 4 ( x ) = − 512 x + 192 x 2 − 24 x 3 + x 4 ; {\displaystyle p_{4}(x)=-512x+192x^{2}-24x^{3}+x^{4};} p 5 ( x ) = 10000 x − 4000 x 2 + 600 x 3 − 40 x 4 + x 5 ; {\displaystyle p_{5}(x)=10000x-4000x^{2}+600x^{3}-40x^{4}+x^{5};} p 6 ( x ) = − 248832 x + 103680 x 2 − 17280 x 3 + 1440 x 4 − 60 x 5 + x 6 ; {\displaystyle p_{6}(x)=-248832x+103680x^{2}-17280x^{3}+1440x^{4}-60x^{5}+x^{6};} 參考文獻 Rota, Gian-Carlo; Shen, Jianhong; Taylor, Brian D. All Polynomials of Binomial Type Are Represented by Abel Polynomials. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze Sér. 4. 1997, 25 (3–4): 731–738 [2021-01-30]. MR 1655539. Zbl 1003.05011. (原始內容存檔於2021-02-08). 外部連結 埃里克·韋斯坦因. Abel Polynomial. MathWorld. 這是一篇關於數學的小作品。您可以透過編輯或修訂擴充其內容。閱論編 Wikiwand - on Seamless Wikipedia browsing. On steroids.