在數學中,給定兩個群和,從 到 的群同態(Group homomorphism)是函數使得對於所有中的和下述等式成立
Quick Facts 群論, 基本概念 ...
群論
|
|
群
|
無限維群
|
共形群 微分同胚群
環路群
量子群 O(∞) SU(∞) Sp(∞)
|
|
|
Close
在這裡,等號左側的群運算,是中的運算;而右側的運算是中的運算。
從這個性質,可推導出將的單位元映射到的單位元,並且它還在的意義上映射逆元到逆元。因此我們可以說「兼容於群結構」。
過去同態常用或來表示,它容易混淆於索引或一般下標。更新近的傾向是把群同態寫在它們的自變量的右側,省略括號,如此簡化成了。這種方法因為其更適應自動機從左至右讀字的習慣從而在某些廣泛應用自動機理論的群論中頗為流行。
在考慮有額外的結構的群的數學領域中,同態不僅要滿足上述的群結構,還要滿足額外的結構。比如拓撲群的同態經常要求是連續的。
- 考慮帶有加法的循環群和整數集的群。映射,有為 模以3,是群同態。它是滿射並且它的核由被三整除的所有整數構成。
- 指數映射產生從帶有加法的實數集的群到帶有乘法的非零實數集的群的群同態。核是而像由正實數組成。
- 指數映射還產生從帶有加法的複數集的群到帶有乘法的非零複數集的群的同態。這個映射是滿射並且有核,這可以從歐拉公式得出。
- 給定任何兩個群和,映射,把所有的元素對應到的單位元,是同態;它的核是集合。
- 給定任何群,恆等映射定義為對於中所有的,。恆等映射是群同態。
- Lang, Serge, Algebra, Graduate Texts in Mathematics 211 3rd, Springer-Verlag, 2002.