在集合論中,空集公理是 Zermelo-Fraenkel 集合論的公理之一。
正式表述
—
直觀上這個公理說:
定理 —
也就是直觀上,「空集是唯一存在的」,這樣根據函數符號與唯一性,可以在 Zermelo-Fraenkel 集合論加入新的常數符號 和以下的新公理
—
一般所稱的空集公理指的是,而不是據以定義常數符號 的原始公理。
解釋
我們可以使用外延公理來證明只有一個這樣的集合。因為它是唯一的,我們可以簡單名之為空集,並將其標記為 {} 或 。因此這個公理的本質是:
- 存在一個空集。
空集公理一般被認為是無可爭議的,它或它的等價命題出現在任何可替代的集合論的公理化中。
在 ZF 的某些陳述版本中,空集公理實際上在無窮公理中是重複的。換句話說,有不預設空集存在的另一種公理版本。還有,以一常量符號表示空集的話,藉此可以把其他 ZF 公理重寫成更簡潔的版本;那麼無窮公理也會用到這個符號而不要求它是空的,儘管需要空集公理來表明它實際上是空的。
而且,在那些不包含無窮集合的集合論中,空集公理仍是需要的。就是說,使用分離公理模式,聲稱任何集合存在的任何公理都蘊涵空集公理。
引用
- Paul Halmos, Naive set theory. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition).
- Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
- Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.