Loading AI tools
垂直于平面的三维向量 来自维基百科,自由的百科全书
三維平面的法線,或稱法向量(英語:Normal)是垂直於該平面的三維向量。曲面在某點P處的法線為垂直於該點切平面(tangent plane)的向量。
此條目沒有列出任何參考或來源。 (2019年1月5日) |
法線是與多邊形(polygon)的曲面垂直的理論線,一個平面(plane)存在無限個法向量(normal vector)。在電腦圖學(computer graphics)的領域裡,法線決定著曲面與光源(light source)的濃淡處理(Flat Shading),對於每個點光源位置,其亮度取決於曲面法線的方
對於像三角形這樣的多邊形來說,多邊形兩條相互不平行的邊的叉積就是多邊形的法線。
用方程表示的平面,向量就是其法線。
如果S是曲線坐標x(s, t)表示的曲面,其中s及t是實數變量,那麼用偏導數叉積表示的法線為
如果曲面S用隱函數表示,點集合滿足,那麼在點處的曲面法線用梯度表示為
如果曲面在某點沒有切平面,那麼在該點就沒有法線。例如,圓錐的頂點以及底面的邊線處都沒有法線,但是圓錐的法線是幾乎處處存在的。通常一個滿足Lipschitz連續的曲面可以認為法線幾乎處處存在。
曲面法線的法向不具有唯一性(uniqueness),在相反方向的法線也是曲面法線。曲面在三維的邊界(topological boundary)內可以分區出inward-pointing normal 與 outer-pointing normal, 有助於定義出法線唯一方法(unique way)。定向曲面的法線通常按照右手定則來確定。
變換矩陣可以用來變換多邊形,也可以變換多邊形表面的切向量(tangent vector)。 設 n′ 為 W n。我們必須發現 W。
W n 垂直(perpendicular)於 M t
很明白的選定 W s.t. , 或 將可以滿足上列的方程式,按需求,再以 垂直於(perpendicular), 或一個 n′ 垂直於 t′。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.