Remove ads
幾何術語 来自维基百科,自由的百科全书
垂直是一個幾何術語。在平面幾何中,如果一條直線與另一條直線相交,且它們構成的任意相鄰兩個角相等,那麼這兩條直線相互垂直。術語「垂直」(符號:⊥)衍生一個形容詞(垂直)或者名詞(垂線)。因此,根據圖一,直線AB通過B點與直線CD相互垂直。像圖一這樣,如果一條直線與另一條直線垂直,那麼它們構成的兩個角稱為直角,或者90°角。
垂足指兩條互相垂直的線相交的點。
垂直的概念對線段和射線也通用,只需看一者所在的直線是否與另一者所在的直線垂直就可以了。如圖一中,線段AB和線段CD相互垂直。甚至線段AB的一端不一定要在線段CD上(即可定向伸縮),它們仍被認為是垂直的。
空間幾何中,有直線與直線、直線與平面、平面與平面之間的垂直關係。垂直可以看做是歐幾里得空間(或內積空間)中的正交關係在二維和三維空間中的特例。
在笛卡兒坐標系中,兩條被如下等式所表示的直線和
那麼垂直的情況有兩種:
如果兩條直線的表達式為:
那麼只有一種情況:兩條直線在這個平面相互垂直當且僅當
假如用和來表示兩條直線的方向向量,那麼上面垂直的充分必要條件就是兩個方向向量正交的充分必要條件。這說明了垂直實際上是正交關係(在二維和三維空間)的一個特例。
三維空間中不僅有直線與直線的垂直,也有直線與平面、平面與平面的垂直。
用尺規作一條過點P與直線AB相互垂直的直線,過程如下(見圖二):
為證明直線PQ與直線AB垂直,使用三角形SSS全等定理證明三角形QPA'和QPB'全等以求得三角形OPA'和OPB'也全等。然後使用三角形SAS全等定理證明角POA和POB相等。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.